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Choosing various likelihood functions on uncertainty

assessment in groundwater simulation-optimization

model

Khadije Norouzi Khatiri, Mohammad Hossein Niksokhan and Amin Sarang
ABSTRACT
The main goal in this research is study of impacts of various likelihood functions on DREAM(zs)

(Differential Evolution Adaptive Metropolis) method results in simulation-optimization model of

aquifer. In this study, DREAM(zs) algorithm has been developed to study aquifer simulation-

optimization model uncertainties. DREAM(zs) is used to investigate uncertainty of parameters of the

simulation-optimization model in Isfahan-Barkhar aquifer, Isfehan province, Iran. This study is carried

out on an aquifer simulation model of MODFLOW that is coupled with MOPSO (multi-objective

particle swarm optimization) optimization. Three likelihood functions, L1, L2, and L3, are considered

as informal and the remaining (L4 and L5) are represented as formal categories. Likelihood function

L1 is Nash–Sutcliffe efficiency and L2 is based on minimum mean square error. L3 uses estimation of

model error variance and L4 focuses on the relationship between the traditional least squares fitting

and the Bayesian inference. In likelihood function L5 the serial dependence of residual errors is

calculated using a first-order autoregressive model of the residuals. Results suggested that the

parameters sensitivity depend on the likelihood function selection, and sensitivity of all parameters is

not similar in different likelihood functions. MOPSO algorithm outputs indicated that likelihood

function No. 5 has a higher speed in reaching convergence and this function also showed that

objective functions had a better performance compared to the other likelihood functions.
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INTRODUCTION
Uncertainty could be defined as the occurrence of phenomena

that are out of the researcher’s control. Simulation of ground-

water flow is always surrounded by the uncertainty due to the

lack of the complete knowledge of the studied physical

system, model structure, and spatial and temporal variability

(Mirzaei et al. ) because the data based on which mathe-

matical models are provided are usually not enough and also

the algorithm that is selected for the modeling is not exactly

similar to what is happening in nature (Alaviani et al. ().

There have been various categorizations provided by the

researchers in order to study the sources leading to uncer-

tainty in groundwater or hydrologic simulation models.
Generally, considering the logical processes in modeling

the groundwater and different categorizations of research-

ers, the uncertainty sources are categorized into three

branches (Wu & Zeng ). The three branches include

the uncertainty of the modeling parameters, for instance

studies of Feyen et al. (), Harrar et al. (), Feyen &

Caers (), Wu et al. (), and He et al. (), uncer-

tainty of the conceptual model, for instance Refsgaard

et al. () and Rojas et al. (), and the uncertainty of

the observational data, for instance Troldborg et al. ().

The stochastic process, which is dependent on its pre-

vious outcomes, is called stochastic process with a Markov
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feature. Based on this, the stochastic process that holds true

with a Markov feature is called the Markov process or

chains. In addition, in cases in which the model results

were studied following simulation with many repetitions, it

is said that Monte Carlo simulation is used. Markov Chain

Monte Carlo (MCMC) method is important for hydrologic

modelers in analyzing the uncertainty of hydrologic and

environmental models (Vrugt et al. , ).

The MCMC algorithm used in this method is called

DREAM(zs) (Differential Evolution Adaptive Metropolis).

DREAM(zs) is based on the primary algorithm of DREAM.

However, in order to produce proposed points in each indi-

vidual chain, the archive of the past states is used. This

sampling is designed for accelerating the convergence and

for problems with high parametric dimensions and uses

only three to five parallel chains in order to properly search

the posterior density function (Schoups & Vrugt ).

Laloy & Bielders () studied DREAM(zs) function for

hydrologic models with many parameters. When using the

DREAM(zs) method, in order to estimate the uncertainty of

the parameter in the hydrologic model, confidence in selec-

tion of the convenient likelihood function that could

produce reliable parameters is of importance. Estimating

good fitting between the observations and simulated corre-

sponding values is mainly dependent on the likelihood

function selection (Beven & Binley ).

The generalized likelihood uncertainty estimation

(GLUE) method was used in studying the influence of like-

lihood function selection on the uncertainty of XAJ-RR

hydrologic model in the Nangao region in China. Alazzy

et al. () showed that likelihood function selection has a

great influence on the sensitivity of the parameters and

studying uncertainty. Accurate likelihood function selection

requires a descriptive explanation of the model error distri-

bution for statistic inference, uncertainty conclusion and

accuracy of the prediction intervals (He et al. ).

Additionally, those likelihood functions must be used

that are capable of showing the uncertainty in the model

structure, input data, and parameters. In order to estimate

the uncertainty of the parameters, there are two categories

of informal and formal likelihood functions (McMillan &

Clark ; Vrugt et al. a). Informal likelihood functions

are the subjective likelihood probabilities and do not result in

a certainmodel for the randomerror series (Smith et al. ).
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In contrast, formal likelihood functions are derived from

a hypothetical statistical model on residual errors (Box &

Tiao ). However, this method has been criticized due to

it highly relying on residual errors hypotheses (Thyer et al.

) where, inmany cases, the residual errors are correlated,

nonstationary (heteroscedasticity), and non-Gaussian

(Kuczera ). Revoking SLS (standard least squares)

assumptions may result in biased estimations of the par-

ameters and lead to parameter or prediction uncertainties.

In order to decrease the SLS error assumptions, some

formal methods are provided (Sorooshian & Dracup ;

Schoups&Vrugt ). Efforts have also beenmade to separ-

ate the various sources of error in hydrologic modeling

(Vrugt et al. , b; Thyer et al. ; Renard et al. ).

In order to study the influence of model structural error

Vrugt et al. (b) used the first-order autoregressive (AR)

of residual errors. The first-order AR of residual errors

scheme removes the temporal autocorrelation of the residuals

(Sorooshian & Dracup ; Bates & Campbell ).

Many of the hydrological researches have studied the

influence of likelihood function selection on uncertainty

analysis in the GLUE method and have shown that the

likelihood function selection could directly influence the

uncertainty analysis and parameters (Freer et al. ;

Stedinger et al. ; Freni et al. ; Alazzy et al. ).

For hydrological research, sufficient likelihood func-

tions should be used to provide more accurate parameters

to estimate the uncertainty of input parameters of hydrolo-

gic models. For this reason, the Bayesian approach used

formal and informal probability functions to estimate par-

ameter uncertainty (Mantovan & Todini ; Beven et al.

; Stedinger et al. ; McMillan & Clark ; Vrugt

et al. b; Cheng et al. ).

Nourali et al. () investigated the impact of likelihood

function selection on estimating the uncertainty of the

rainfall-runoff model (HEC-HMS) using the MCMC algor-

ithm. The results showed that the likelihood function

related to the serial dependence of residual errors can

obtain a valid posterior distribution and thus can be

employed for further applications.

Cheng et al. () compared the likelihood functions

for parameter uncertainty analysis and calibration using

the MCMC method. The results showed that the type of

likelihood function essentially impacts the calibrated
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parameters and the re-enacted consequences of high- and

low-flow components.

He et al. () investigated the effect of likelihood func-

tion selection on estimating crop model parameters using the

GLUE method. The results of their research showed that the

combinatorial probability method has a great impact on

parameter estimation. A hybrid approach based on the

probability of products in each set of observations can signifi-

cantly reduce the uncertainty in the posterior distribution.

The main purpose in this study is the investigation of

the importance of the likelihood function selection on the

uncertainty analysis using DREAM(zs) algorithm in simu-

lation-optimization model. Accordingly, the quantitative

and qualitative simulation model of the groundwater was

provided by MODFLOW and MT3DMS, respectively. Sub-

sequently, this model was linked to the DREAM algorithm

in MATLAB. In the aforementioned algorithm, the influence

of three informal likelihood functions and two formal likeli-

hood functions on the analysis of the uncertainty of model

parameters in DREAM(zs) method was studied. The outputs

resulting from linking the model and algorithm uncertainty

were inserted into the multi-objective particle swarm optim-

ization (MOPSO) algorithm and the most optimized results
Figure 1 | Location of study area.

://iwaponline.com/ws/article-pdf/20/2/737/765668/ws020020737.pdf
were derived considering the objective function, which

includes minimizing the groundwater level drop and total

dissolved solids (TDS).
MATERIALS AND METHODS

Study area

The studied region in this research is the Isfahan–Barkhar

region, which is located in the central part of Iran. This

region has an area of around 1,500 km2 and is one of the lar-

gest and most significant regions in the Isfahan province

(Figure 1).

Isfahan-Barkhar basin has faced an increase in TDS in

most regions during the recent years. Based on current stat-

istics and maps, the total arable land in the studied region is

around 70 hectares, which is decreasing due to thewater scar-

city in the recent years and the high expansion of cities and

industrial areas. The most prominent activity in the region

is the agricultural activity with an area of around 31,000 hec-

tares. Due to the poor quality of the groundwater in most

parts of the region for drinking, the water is supplied from

the Zayanderud River to most rural and urban areas.
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Research framework

Since one of the most significant features in groundwater

modeling is the parameter of recharging from surface,

initially its temporal and local distribution was determined

using a Soil and Water Assessment Tool (SWAT).

A quantitative and qualitative simulation model of

groundwater was developed based on the available stat-

istics and data from the studied region. In order to

achieve this, a GMS (groundwater modeling system)

v10.1 model, which included special features such as feasi-

bility of developing a conceptual model and the capability

to automatically convert it to numerical model and adapta-

bility with geographic information system (GIS)-based

systems, was used. In GMS, MODFLOW and MT3DMS

models were used for quantitative and qualitative simu-

lation. Calibration of these models is particularly

important before being used in predicting and evaluating

system responses to what has not been seen. In this

regard, the manual and also automatic calibration methods

are considered by the PEST (parameter estimation) model.

As already mentioned, DREAM uncertainty method is

used. This method, which studies the parametric space

with the least number of repetitions, was linked to the

simulator in MATLAB by coded link. In DREAM uncer-

tainty algorithm, five types of likelihood functions were

used to assess the output of simulation-optimization.
Figure 2 | Flowchart of proposed methodology.
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Moreover, to link the simulator to the optimizer, coding

in MATLAB was used. Subsequently, the developed simu-

lator models with the capability to calculate the processes

and requirements for planning the exploitation of the aquifer

were linked to a multi-objective metaheuristic optimizer

model in order to optimize the exploitation of the aquifer

and the studied water resources system (Kamali & Niksokhan

). The decision variables in this optimizer model are pump

discharge values in exploited wells. The objectives include

minimizing the annual groundwater table changes and

minimizing the groundwater qualitative changes; while the

constraints include the TDS in wells, the available surface

water amount, pump discharge in exploited wells, and limit-

ation related to the water supply. For each set of the

aforementioned variables, simulator models of MODFLOW

and MT3DMS were recalled and embedded to MOPSO.

Subsequently, the general heuristic rules and updating of

the variables continue, along with guiding the evolutionary

search process and the basic population in the metaheuristic

optimizing model for optimizing the exploitation variables

and designing, until convergence is reached. Figure 2

demonstrates the research framework.

Likelihood functions

The performance of any set of parameters is assessed in pre-

dicting the model states by the likelihood value (He et al.
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). In this research, three informal likelihood functions

and two formal likelihood functions were selected to

assess their influence on the results of simulation in

DREAM(zs) model in MODFLOW uncertainty assessment.

These functions are respectively presented in Equations

(1)–(5):

L1(θijO) ¼ NS ¼ 1� σ2
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2
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where, in all equations, i¼ 1, 2, 3,…, N and θi is the par-

ameter set of ith, Pj(θi) is the output of the model under

parameter set of θi, O is the observational flow, Oj is the

jth observation of O, σ20 is the variance of the model errors,

which is equal to the variance of observations in this

study, O is the mean of the observations (Equation (7)),

MSEi is the mean square error of the model predictions

for the parameter set of ith (Equation (6)), min(MSE) is the

minimum MSEi, R is the first-order correlation coefficient,

σ(θ.R)j is the corrected time series of first-order residual

autocorrelation (Equation 10), ε(θ) is the residual value

(Equation (8)), N is the number of parameter sets, and M

is the number of the observations.

MSEi ¼ 1
M

XM
j¼1

(Pj(θi)�Oj)
2

0
@

1
A (6)

�O ¼ 1
M

XM
J¼1

Oj (7)
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The residual vector is derived from the difference

between P(θ) and O.

εj(θ) ¼ Pj(θ)�Oj j ¼ 1:2:3: . . . . . . :M (8)

The closer the residuals to 0, the better the observed

values are simulated. Although due to the error of the

input data, lack of efficiency in model structure, errors in

measuring Oj output, and uncertainty correlated with the

correct selection of θ values, the residual values will never

be 0. Better match of the observational and simulated flow

and the residual value becoming closer to 0 is carried out

by regulating the values of parameters. Usually the input

data uncertainty and model structure are not considered

as the error potential source, which is not realistic for real-

world applications (Vrugt et al. , b), and hence

developing an inferential method that operates all separated

and convenient error resources is quite convenient (Vrugt

et al. ).

If it is supposed that the error value in Equation (8) is

mutually independent (non-correlated) and has a Gaussian

distribution with error variance of σ20, the likelihood value

of Equation (4) will be likelihood function of L4. Using

this formula is convenient, but the assumption of indepen-

dent error in hydrologic modeling is not realistic.

The method that DREAM(zs) uses for correlated errors is

the first-order residual AR (AR-1):

εj ¼ RεJ�1 þ δJ j ¼ 1:2:3 . . . :M (9)

where δ∼N(0.σ20) is the residual error with a mean of 0 and

constant variance of σ20. The corrected time series of AR-1

from residuals have the following form:

δ(θ:R)j ¼ εj(θ)� Rεj�1(θ) j ¼ 1:2:3 . . . ::M (10)

In accordance with Equation (5), AR-1 model is com-

bined in the likelihood function logarithm formula

(Sorooshian & Dracup ; Vrugt et al. b).

The AR-1 of error residuals meets the time residual auto-

correlation. The R parameter in this model is estimated

along with the hydrologic model parameters during cali-

bration. The prior uncertainty range of R parameter
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(correlation coefficient) is considered to be between 0 and 1

(Schoups & Vrugt ).
Parameter uncertainty

The analysis proposed to retrieve the parameter uncertainty

based on nonlinear regression model is as the following:

Y ¼ Eþ e (11)

where Y is a vector including n amount of data in the

observed flow, E is the vector corresponding to the expected

values, and e is the error vector or the stochastic residual.

The residual errors are determined by pdf and a vector of

ηe. The common method is that errors are assumed to be

independent and co-distributed with Gaussian pdf with a

mean of 0 and constant variance, N (0, σ2). If the model

parameters are considered as the only source of uncertainty,

the posterior distribution of p(η|Y) is estimated from Bayes’

theorem:

p(ηjY) ¼ p(η) p(Y jη)
p(Y)

(12)

where p(η) is the prior distribution of parameters, and

p(Y|η) is equal to the l(η|Y) likelihood function. p(Y) is the

normalizer constant, and η ¼ {ηh:ηe} show the parameters

(ηh model parameters and ηe the residual model par-

ameters). Parameter uncertainty with the presence of Y

observational data is expressed by parameter prior pdf

(Box & Tiao ). Parameter uncertainty for the given

observed data Y may be expressed by posterior pdf of

parameters (Box & Tiao ) by determining the prior

pdf. The likelihood function is used for calculating the

posterior parameter uncertainty by sampling methods. In

order to estimate the parameter uncertainty, the last 20%

of the posterior parameters model is used for producing

the model outputs. The Gellman–Rubin statistic was

used to test the convergence. Subsequently, the results

were analyzed and 95% confidence intervals were drawn

by calculating the lower 2.5% and the upper 97.5%

percentiles.
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Parameters of hydraulic conductivity (HC), horizontal

anisotropy (HA), storage coefficient (SC), and recharge

(RCH) are considered as the input parameters with errors

in this research.
Optimization

In this study, the decision variables in the optimization

model are the pump discharge values in wells. The objective

functions were also selected from minimizing quantitative

instability and minimizing qualitative instability.

Min F1 ¼
XNtp

t¼1

XNJ

J¼1

jHtj �H1jj for t ¼ 1:2: . . . :Ntp

and j ¼ 1:2: . . . :Nj

(13)

Min F2 ¼
XNtp

t¼1

XNJ

J¼1

jCtj � C1jj for t ¼ 1:2: . . . :Ntp and

j ¼ 1:2: . . . :Nj

(14)

F1 and F2 are the objective functions, Ntp is the total

number of planning months that is equal to 125, Nj is the

total number of model cells that is equal to 15,912, Htj is

the water table at tth time step in ith cell, H1j is the water

table at the first time step in jth cell, Ctj is the water TDS

at tth time step ith and C1j is the water TDS at the first

time step in jth cell.

Generally, the constraints of the optimization problem

in this study are of quantitative and qualitative types.

The qualitative constraints include limiting the TDS in

wells and the quantitative constraints include limiting

the available surface water amount, pump discharge

limit in exploited wells, and limits related to the water

supply.

GWtp ¼ td:
XNW

k¼1

Qk,tp ∀tp ¼ 1, . . . , Ntp (15)

Ck,tp ¼ f(~C, ~H, Ω, CRe,t p�1 ) ∀tp ¼ 1, . . . , Ntp (16)

SWtp ¼ Dtp �GWtp ∀tp ¼ 1, . . . , Ntp (17)

SWmin
tp

� SWtp � SWmax
tp

∀tp ¼ 1, . . . , Ntp (18)
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Qmin � Qk,tp � Qmax ∀tp ¼ 1, . . . , Ntp (19)

Cmin � Ck,tp � Cmax ∀tp ¼ 1, . . . , Ntp (20)

GWtp is the total water pumped from the agricultural

wells in the month of tp, tp is the month counter, td is the

number of the days in the month of tp, Qk.tp is the pump dis-

charge of the well of k in the month of tp (m3/day), k is the

pumped wells number counter, NW is the total number of

pumped wells in the region, Ntp is the total number of

planned months, Ck.tp is the TDS in the well k in the

month tp (mg/lit), and SWtp is the amount of surface water

used in the month of tp (m3). Dtp is the water required for

agriculture in the month of tp based (m3) and SWmin
tp is

the minimum amount of used surface water in the month

of tp (m3), which is equal to 0 (m3). SWmax
tp is the maximum

amount of used surface water in the month of tp (m
3), which

is equal to the total water needed for agriculture in the

region (m3). Cmin is the minimum TDS in the used water,

which is equal to 0; Cmax is the maximum TDS in the used

water, which is equal to 2,000 mg/L. The total water

demand in the studied region is 600 MCM provided from

the surface and groundwater.
RESULTS AND DISCUSSION

Linking SWAT and MODFLOW

In this study, a consecutive or one-way combination method

was used for combining two models of SWAT and MOD-

FLOW. In this method, the construction and calibration of

two models of SWAT and MODFLOW are separate from

each other. In other words, the results of the SWAT

model, such as recharge, are used as the input data in the

MODFLOW model. After implementing the SWAT model,

groundwater recharge values are converted into the format

of input in MODFLOW in GMS along with its temporal

and local changes. The SWAT model for recharge values

includes a text file in which the time step of recharge

values is provided for each HRU (hydrologic response

unit) is given in mm/month. In this file, the recharge

values for each HRU is as GW-RCH-i, in which i includes

each HRU number. From HRULandUseSoilsReport.txt
://iwaponline.com/ws/article-pdf/20/2/737/765668/ws020020737.pdf
file, the data related to any sub-basin is extracted separately.

This data includes number of HRUs and the area of HRU in

each sub-basin and other data such as land cover, land slope

and soil type in each HRU. According to the above infor-

mation, the recharge value in each sub-basin is derived

from the area occupied by HRUs available in it and their

recharge values, which are estimated using recharge for-

mulas. The above-mentioned stages are coded in a

computer program in MATLAB that produces recharge

value in MODFLOW for any sub-basin in the form of a

text file, from the SWAT output files. The recharge value

derived from any sub-basin is assigned to its corresponding

cells in MODFLOW. The cells covered by any sub-basin

are determined by GIS through polygon transfer of SWAT

sub-basins to GMS. Using the proposed method, the

recharge values derived from the SWAT model are trans-

ferred to the MODFLOW model.

In this research, the MODFLOW model in the format of

GMS software was used in order to study the water balance

condition and the discharge capacity of the aquifer. To cali-

brate in the steady state, the first period from October 7,

2002 to November 7, 2002 was selected because the water

table change is insignificant. In the steady state, the HC and

HA parameters were retrieved and, in transient condition,

the conductivity parameters and HA and recharge parameters

(derived from SWAT) were formulated in 95 monthly time

steps from November 7, 2002 to October 7, 2010, and the

specific drainage was estimated. The quantitative calibration

model was manually set so that the model outputs were

adapted with the observational as much as possible. Sub-

sequently, the automatic calibration was carried out using

PEST considering the initial values derived for parameters

at the end of manual calibration stage and introducing

allowed maximum and minimum values for each of the par-

ameters and applying other regulations in this software.

Figure 3(a) demonstrates the calibrated steady-state

result for November 7, 2002. Green color demonstrates

errors under 0.5 unit, yellow color indicates errors in the

range of 0.5 and 1 unit, and red color demonstrates errors

larger than 1 unit. The consequences of the monitoring

well show that the majority of computed groundwater

elevation is within a 0.5 m interval from the observed

value. Figure 3(b) demonstrates the validated outcome for

the end of the simulation model on March 7, 2013.



Figure 3 | Head of water: (a) November 7, 2002 and (b) March 7, 2013. Please refer to the online version of this paper to see this figure in colour: http://dx.doi.org/10.2166/ws.2020.003.
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Coupling MODFLOW model, DREAM algorithm and

MOPSO

In order to read the input set inserted in the DREAM(zs)

algorithm, it is necessary to prepare the format of the

input files and, after inserting them in DREAM(zs) algorithm

and correcting the errors (uncertainty), a file is coded in

MATLAB so that MODFLOW model can read them and
om http://iwaponline.com/ws/article-pdf/20/2/737/765668/ws020020737.pdf
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calculate the proper output. For this purpose, a code was

written to separate the aforementioned parameters from

the model parameters. Moreover, the code prepares the

proper format for being accepted by DREAM(zs). This pro-

gram reads the inputs from the file with the extensions of

MODFLOW model input and converts them to a vector

format. This vector categorizes each input and inserts

them in a matrix to DREAM(zs). Subsequently, by executing

http://dx.doi.org/10.2166/ws.2020.003
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the mentioned file in MATLAB, the program carries out the

conversions and drawings automatically, and inserts in

DREAM(zs). After returning from DREAM(zs) it converts

the file format into the initial format and saves them. After

providing the inputs with the proper format for DREAM(zs)

algorithm, these inputs are recalled by MODFLOW and

inserted in DREAM(zs) algorithm, and its output are the

inputs that the model optimizes based on the minimum

head difference. Subsequently, the MODFLOW model

receives inputs from the previous stage and prepares the out-

puts. This stage is repeated as many times as needed until

convergence is reached. The received output from the pre-

vious stage is then recalled by MOPSO algorithm, and

ultimately, the optimized head and TDS in each aquifer net-

work cell are reached, considering the desired objective

functions. It has to be mentioned that all the items as men-

tioned earlier and related codes were carried out in

MATLAB.

Figure 4 presents the HC, SC, and HA inputs for two

replications for which DREAM has predicted. As observed,

the head diagram on the right side of these diagrams is the

function fitness rate.

Appendix A presents the best input determined by

DREAM(zs) algorithm and its difference rate with observed

values. What is required is that the value that DREAM(zs)

predicts is close to the real value and the main nature of

the input parameters is not lost. Among the defined
Figure 4 | Inputs predicted by DREAM for two replications (HC, HA, SC).

://iwaponline.com/ws/article-pdf/20/2/737/765668/ws020020737.pdf
likelihood functions, function No. 1 has applied a higher

degree of change compared to the other functions. It has

to be mentioned that Appendix A presents the HC and

recharge in 100 cells, in order to compare the likelihood

functions and variations that are applied to these two

parameters.

To show the sensitivity of the parameters toward differ-

ent likelihood functions, the cumulative distribution of the

parameters used for five likelihood functions were drawn

against their observed values. Figure 5 shows that the likeli-

hood function has a great influence on the parameters

sensitivity and the sensitivity of all parameters is not the

same in different likelihood functions. For this reason, the

selection of likelihood functions should be carried out

with more care due to their significance in parameters

values.

Given the above description and the influence of the

likelihood function on the sensitivity of the parameters,

researchers such as Abebe et al. () and Alazzy et al.

() reached a similar conclusion in studying the cumulat-

ive distribution of later parameters in the hydrological

models, HBV and XAJ-RR, respectively, and noted that

not all parameters have the same sensitivity to different like-

lihood functions.

For most parameters, especially the recharge parameters,

likelihood functions No. 4 and No. 5 have a completely differ-

ent influence of the sensitivity of the parameters compared to



Figure 5 | Cumulative distribution function in various likelihood functions for input parameters. Please refer to the online version of this paper to see this figure in colour: http://dx.doi.org/

10.2166/ws.2020.003.

746 K. Norouzi Khatiri et al. | Likelihood functions on uncertainty assessment in groundwater Water Supply | 20.2 | 2020

Downloaded fr
by guest
on 28 March 2
the other functions. Cumulative distribution comparison

showed that for most of the parameters, cumulative distri-

bution under likelihood functions No. 1–No. 3 are almost

the same and these likelihood functions have almost the

same influence of the sensitivity of the parameters. The influ-

ence of selecting these likelihood functions is therefore

insignificant on the parameters.
om http://iwaponline.com/ws/article-pdf/20/2/737/765668/ws020020737.pdf
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Results from the drawing of the posterior distribution

of the functions showed that the posterior distribution of

most parameters for the likelihood functions No. 1–No. 4

are, to a great extent, similar in the parameter range

and distribution shape. Moreover, in likelihood function

No. 5, the posterior distribution is different from other like-

lihood functions in the parameter range and distribution

http://dx.doi.org/10.2166/ws.2020.003
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shape. Posterior distribution for most parameters by the

likelihood function No. 5 is determined to be better and

have lesser uncertainty so that the posterior distributions

derived by these likelihood functions have normal distri-

butions for most of the parameters. These diagrams show

that most of the parameters are better determined by

these functions and have lesser uncertainty and higher

identification capability. (Appendix B) In addition, the

prior distributions diagram was drawn for different par-

ameters, which is similar to the posterior distribution

diagram in likelihood function No. 5.

Studying the parameters coefficient of variation

In order to determine the parameters sensitivity degree,

coefficient of variation (CV) statistic is used. Lower CV

for the parameters shows higher sensitivity of those par-

ameters (He et al. ; Pourreza-Bilondi et al. ;

Shafiei et al. ; Alazzy et al. ). The mean and coef-

ficient of variation of the used parameters are presented

in Table 1. Comparing the parameters in various likeli-

hood functions, it is determined that in likelihood

function No. 5, the CV for most parameters is smaller

compared to other likelihood functions. This suggests

that most parameters are better determined by likelihood

function No. 5 and have lower uncertainty, higher sensi-

tivity, and higher identification capability. These results

prove those in Appendix B, which are related to the

form of posterior distribution functions of these

parameters.

According to Table 1, the lower rate CV for recharge

parameter and HC suggests that the parameters variation

range is smaller compared to the initial range of the
Table 1 | Mean and coefficient of variation for parameters estimated by DREAM(zs)

Parameter

Likelihood

L1 L2 L3

Average CV Average CV Aver

HC 7.574 2.687 7.514 2.564 7.49

SC 2.041 3.214 2.044 3.189 2.05

HA 0.016 2.483 0.016 2.408 0.01

RCH 21.62 2.28 20.86 2.40 24.2
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parameters, and these parameters are considered as the

most sensitive parameters. Results from studying the par-

ameters posterior functions and CV suggested that

likelihood functions No. 4 and No. 5 have a relatively

larger influence on results of parameters uncertainty ana-

lyses compared to other likelihood functions.

The results related to linking the model to algorithm

MOPSO are presented in Appendix C. The performance of

likelihood functions in the convergence of MOPSO algor-

ithm shows that the likelihood function No. 5 performs

better than other likelihood functions.

The ultimate output value of the model for the last 20

replications is presented in Appendix D, and as observed,

the performance of likelihood function No. 5 and its speed

in reaching convergence is better than other functions.

Since the objective in MOPSO algorithm is to mini-

mize head loss and TDS rate, the percentage of the

output head and TDS from simulation-optimization was

drawn in DREAM(zs), considering various likelihood

functions. As could be observed in Appendix E, the likeli-

hood function No. 4 and No. 5 had the best performance

in this regard.

The model output in the simulation-optimization mode

with and without the DREAM(zs) algorithm is shown in

Appendix F. The maps show the involvement of uncertainty

algorithm (elimination of observational errors in model

inputs) in simulation-optimization, which leads to an

increase in groundwater level by approximately 1 m. The

level of groundwater level improvement is about 4 m, con-

sidering the observational head level in some parts of the

study area. The second objective in this study, which was

to minimize TDS, led to the improvement of the parameter

status by an average of 745 mg/L. Table 2 presents the
L4 L5

age CV Average CV Average CV

3 2.394 7.54 2.383 7.523 2.345

6 2.924 2.068 2.932 2.059 2.881

6 2.225 0.016 2.215 0.016 2.176

8 2.19 28.21 2.10 29.75 2.00



Table 2 | Observed TDS parameter statistics against its optimal value (mg/L)

Parameter

Mean Maximum Minimum

Observed Optimum Observed Optimum Observed Optimum

TDS 2,903.89 2,159.27 5,834.22 4,824 855.16 299.12
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statistics of the observed TDS parameters against its optimal

value.
CONCLUSION

In this research, the influence of three informal and two

formal likelihood functions on the estimation of simu-

lation-optimization parameters under DREAM(zs) was

assessed. The likelihood function No. 1 is the Nash–Sutcliffe

efficiency (NS); the likelihood function No. 2 is a minimum

mean square error; the likelihood function No. 3 is a model

estimation error variance; and the likelihood function No. 4

is the relation between standard least squares fit and Baye-

sian inference. In likelihood function No. 5, the sequential

dependency of the residual errors is calculated by using

first-order AR of residual errors.

Among the defined likelihood functions, the values pre-

dicted by function No. 1 were more different than the other

likelihood functions. The likelihood function has a great

effect on the sensitivity of the parameters and the results

showed that the sensitivity of all the parameters is not the

same for different likelihood functions. Due to their impor-

tance in the parameter values, the choice of the likelihood

functions should therefore be considered more carefully.

Low values of coefficients of variation for the recharge

and HC parameter indicate that the range of the parameter

changes is smaller than the initial range of parameters and

these parameters are considered as the most sensitive par-

ameters. Functions No. 4 and No. 5 also had a completely

different effect on the sensitivity of the parameters com-

pared to other likelihood functions.

Results from the drawing of the posterior distribution of

the functions showed that the posterior distribution of most

parameters for the likelihood functions No. 1–No. 3 are, to a

great extent, similar in the parameter range and distribution

shape. The posterior distribution for most of the parameters
om http://iwaponline.com/ws/article-pdf/20/2/737/765668/ws020020737.pdf
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is determined better by likelihood functions No. 4 and No. 5

and they also have lower uncertainty and higher identifi-

cation capability. In likelihood function No. 5, compared

to other likelihood functions, the CV for most parameters

is smaller, suggesting that most parameters are better deter-

mined by likelihood function No. 5 and have lower

uncertainty, higher sensitivity, and higher identification

capability. MOPSO algorithm outputs indicated that the

likelihood function No. 5 has a higher speed in reaching

convergence. The results of this function also showed that

objective functions had a better performance compared to

the other likelihood functions. With respect to DREAM(zs)

uncertainty, the results of MODFLOW output parameters

showed that these parameters were faster in reaching con-

vergence by MOPSO algorithm and likelihood function

No. 5 had the highest speed.
SUPPLEMENTARY MATERIAL

The Supplementary Material for this paper is available

online at https://dx.doi.org/10.2166/ws.2020.003.
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