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rapid development of information technology, many data-based approaches have been introduced to improve this problem, like

arti � cial neural network, adaptive neuro-fuzzy inference system, and support vector machine ( Chen & Chau 2016 ; Moghayedi
& Windapo 2019 ; Adib et al. 2021; Ji et al. 2021). By gaining knowledge from history, data-based approaches gradually produce
satisfactory forecasting results in hydrology even though the detailed physical process of the hydrological time series is not well

understood (Feng & Niu 2021 ; Feng et al. 2021b; Niu et al. 2021c). Owing to their easy implementation and high forecasting
ability, data-based approaches are becoming more and more popular in practical engineering ( Guo et al. 2013; Yuan et al. 2018;
He et al. 2019).

Single-layer feedforward neural network (SLFN) has proved to be an effective tool for regression and classi � cation pro-

blems (Chua & Wong 2011 ). Generally, traditional gradient-based training tools are widely used to determine the
computation parameters of the SLFN model. However, many applications show that the gradient-based methods are
easily trapped into local minima because the network structure features are not well considered. To alleviate the defects

of the gradient-based methods, extreme learning machine (ELM) has been successfully developed in recent years ( Peng
et al. 2017; Zhou et al. 2018; Luo et al. 2019). In ELM, the input-hidden weights and hidden biases are randomly determined
to analytically obtain the hidden-output weights by the Moore –Penrose generalized inverse method. Compared with the gra-

dient-based methods, ELM shows the advantages of faster training speed, stronger generalization ability and fewer
computation parameters. Nevertheless, it is dif � cult for the ELM model to achieve optimal results because the network par-
ameters are determined in a random manner. In other words, the standard ELM method tends to fall into a local minimum

because the values of input-hidden weights and hidden biases are not well chosen. In order to further improve the general-
ization ability of the ELM method, meta-heuristic evolutionary algorithms are used to optimize model structure and
hyperparameters (Niu et al. 2021d, 2021e), like particle swarm optimization, gravitational search algorithm, cooperation
search algorithm and sine cosine algorithm ( Mei et al. 2018; Niu et al. 2021f).

As a novel swarm intelligence algorithm, the sparrow search algorithm (SSA), inspired by the sparrow ’s wisdom, foraging
and anti-predation behaviors, has been developed to solve the global optimization problems ( Tuerxun et al. 2021; Yang et al.
2021; Yuan et al. 2021). In SSA, several modules are carefully designed to balance exploration and exploitation, like produ-

cers for searching for food, scroungers for monitoring the producers and watchers for avoiding danger ( Truchet et al. 2016;
Wang et al. 2021; Zhang & Ding 2021 ). The SSA method is employed to deal with a group of numerical functions and engin-
eering problems. The results show that the SSA method outperforms several mature evolutionary algorithms with respect to

search rate, solution precision, and local minimum avoidance. Due to its satisfactory search capability, the SSA method is
gradually becoming popular in many research � elds. However, there are few reports about using the SSA method to improve
ELM performance in hydrological forecasting. To � ll this research gap, this research develops a hybrid forecasting method
where the SSA method is used to search for satisfying network parameters of the ELM model. Then, the hybrid method is

used to forecast the long-term runoff time series in different working conditions. The comparative results demonstrate that
the developed method outperforms several traditional methods in both training and testing phases. Therefore, it can be con-
cluded that the SSA method is a useful optimizer for � nding a better neural network structure for accurate time series

simulation, while an effective evolutionary extreme learning machine tool is provided here for hydrological forecasting.
The rest of this study is summarized as below: Section 2 gives information on the hybrid method; Section 3 compares the

engineering practicability of the proposed method in hydrological forecasting; and the conclusions are given at the end.
2. METHODS

2.1. Sparrow search algorithm (SSA)

Sparrow search algorithm (SSA) is an emerging evolutionary algorithm based on the sparrow ’s foraging and anti-predation
behaviors (Zhou & Wang 2021 ). Compared with several traditional evolutionary algorithms, SSA has stronger global search
ability and faster convergence speed in global optimization problems. In SSA, the population is divided into two different

groups: one is the producer group possessing larger search steps to� nd food, and another is the scrounger group that follows
the producers to � nd food. During the search process, the scroungers have larger probabilities to � nd food via the following
behaviors, while the roles of both producers and scroungers are adjusted dynamically to � nd more high-quality food sources.

Then, the mathematical model of the SSA method is given as below:
Step 1: Parameter de� nition, of the number of sparrows ( N ), the number of producers ( PN) and scroungers (N-PN), the

maximum iteration ( gmax). The location of the ith sparrow can be de� ned as xi ¼ (xi,1, xi,2,…, xi,D) while f (xi) represents
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the � tness value of the ith sparrow. Then, the initial swarm x can be expressed as below:

x ¼
x1,1 � � � x1,d

..

.
xi,j

..

.

xN,1 � � � xN,D

2
64

3
75 (1)

where xi,j is the jth element ’s value of the ith sparrow. D is the number of decision variables.

Step 2: The producers’ positions are updated by:

xgþ1
i ¼ xg

i � exp
�i

a � gmax

� �
if (R , ST)

xg
i þ Q � L else i [ [1, PN],

8<
: (2)

where gis the iteration index; a is a random number uniformly distributed in the range of [0,1]; Q is a random number obeying the

standard normal distribution; and L is a 1� D matrix whose elements are set as 1.R ∈ [0,1] and ST∈ [0.5, 1.0] denote the alarm
value and safety threshold. If R, ST, the producers will execute the extensive search mode without the predators ’ in � uence; if
R� ST, the predators have been found by some sparrows and all the sparrows should � y to the safe areas.

Step 3: The scroungers’ positions are updated by:

xgþ1
i ¼ Q � exp

Gworst � xg
i

i2

� �
if (i . N=2)

Sbest þ jxg
i � Sbestj � Aþ � L else i [ [PN þ 1, N ],

8<
: (3)

where Sbest is the producer ’s best-known location; Gworst is the global worst-known location found by the swarm; A is a 1�D
matrix whose elements are randomly chosen from the set {1, �1}; and Aþ ¼AT(AAT)�1. If i .N/2, the ith scrounger should
search in other areas to � nd energy; otherwise, the ith scrounger is foraging in the area around Sbest.

Step 4: To avoid possible danger, about 10%–20% of sparrows in the swarm are randomly selected as the scouters and their
positions are updated by:

xgþ1
i ¼

Gbest þ b � jxg
i �Gbestj if( f(xg

i ) . f(Gworst ))

xg
i þ

K � jxg
i �Gworst j

f(xg
i ) þ f(Gworst ) þ u

if( f(xg
i ) ¼ f(Gworst ))

8><
>: (4)

where β is a random number obeying the standard normal distribution; Gbest is the global best-known location found by far;
K ∈ [�1,1] is a random number representing the search step size; and θ is a small constant used to avoid the denominator
being zero. If f(xg

i ) . f(Gworst ), the ith sparrow at the edge of the swarm will easily � nd predators; otherwise, the ith sparrow
at the center of the swarm should be close to other sparrows for antipredation.

Step 5: Update the best as well as worst � tness values of the swarm to get all the sparrows’ new positions.
Step 6: If the termination condition is not met, return to Step 2 for the next cycle; otherwise, the global best-known position

found by the sparrow population will be treated as the � nal solution for the target problem.

2.2. Extreme learning machine (ELM)

Extreme learning machine (ELM), shown in Figure 1, is an effective training tool developed to resolve a single-layer feedfor-
ward neural network (SLFN). After randomly determining the values of the input-hidden weights and hidden biases, ELM

makes use of the classical Moore–Penrose generalized inverse to analytically calculate the hidden-output weights ( Huang
et al. 2006a; Cambria et al. 2013; Huang et al. 2014). Different from the conventional learning methods for SLFN, ELM
makes an obvious reduction in the size of the computational parameters. In this way, ELM possesses the merits of faster

execution speed, fewer learning parameters and stronger generalization ability in comparison with the traditional gradient-
based methods (Yadav et al. 2016).

For a training dataset with N samples, the outputs of the ELM model with L hidden neurons can be given as below:

oi ¼
XL

l¼1

bl � g(wl � ai þ bl ), i ¼ 1, 2, � � � , N (5)
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where ai and oi are the inputs and outputs associated with the ith training sample; vl is the weight vector connecting the lth

hidden neuron with all the neurons in the input layer; bl is the weight vector connecting the lth hidden neuron with all the
neurons in the output layer; bl is the bias of the lth hidden neuron; and g( � ) denotes the activation function of the lth hidden
neuron.

In the ELM theory, it is believed that the neural network model is capable of ideally approximating all the considered train-
ing data without any deviation. Then, the above equation can be modi � ed as below:

Hb ¼ O (6)

H ¼
g(w1 � a1 þ bl ) � � � g(wL � a1 þ bL )

..

. . .
. ..

.

g(w1 � aN þ bl ) � � � g(wL � aN þ bL)

2
64

3
75

N�L

(7)

b ¼
b1,1 � � � b1,m

..

. . .
. ..

.

bL,1 � � � bL,m

2
64

3
75

L�m

(8)

O ¼
o1,1 � � � o1,m

..

. . .
. ..

.

oN,1 � � � oN,m

2
64

3
75

N�m

(9)

where H is the output matrix associated with the hidden layer; b is the weight matrix connecting the hidden layer with the
output layer; and O is the output matrix associated with all training data.

From the mathematical viewpoint, H and O can be regarded as an independent matrix and dependent matrix of N training
samples, and thenb becomes the coef� cient matrix to be determined. By this time, Equation (6) will be transformed to a stan-

dard linear system and then the weight matrix b can be analytically deduced by determining the optimal solution of the above
Figure 1 | Sketch map of the extreme learning machine model.
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linear system, which can be expressed as below:

~b ¼ H yO (10)

where Hy denotes the Moore–Penrose generalized inverse matrix of H .

2.3. Hydrological time series forecasting model based on ELM and SSA

As mentioned above, the ELM model can achieve good performance and make an obvious reduction in the execution time by
stochastically determining the model parameters, rather than by iterative adjustment. ELM has the merits of faster training

speed and stronger learning ability ( Huang et al. 2006b; Cao et al. 2012; Huang et al. 2015). However, the random determi-
nation of parameters associated with the hidden layer may fail to produce suboptimal solutions, which then affects the
forecasting capability of the model in practice. In order to address this defect, this paper develops an effective ELM-SSA

model where the hidden biases and input-hidden weights of the ELM model are iteratively optimized by the SSA method,
rather than the random assignment at the initial phase and no adjustment in the late learning phase. Figure 2 shows the � ow-
chart of the proposed method. For the sake of simplicity, the proposed method with n input variables, L hidden neurons and

one output variable is used to forecast the hydrological time series. In other words, the developed method has n input nodes,
L hidden nodes and 1 output node. Then, the execution steps of the proposed method are given as:

Step 1: Data normalization. All the considered data should be normalized into the range of [0,1] before being divided into
the training and testing datasets, which can be expressed as below:

Q0
i ¼ a �

Qi � min
1�i�n

{Qi }

max
1�i�n

{Qi } � min
1�i�n

{Qi }
þ b (11)

where Q0
i and Qi are the ith normalized and original data; n is the amount of data; and a and b are the adjusting coef� cients.

Step 2: Parameter setting, such as the number of sparrows and iterations in SSA, the number of hidden neurons as well as
the activation function of hidden neurons in ELM. Here, the classical sigmoid function is chosen as the activation module for
data mapping in the hidden layer.
Figure 2 | Flowchart of the proposed method.
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Step 3: Population initialization. Set the counter g¼ 1 and then randomly create all the element values of each sparrow of

the initial swarm in the feasible state space. Each sparrow represents a possible ELM model containing all the parameters
associated with the hidden layer.

Step 4: Problem evaluation. Calculate the hidden-output weights to obtain the � tness value of all the sparrows. For the ith

sparrow at the gth cycle xg
i , its � tness value f(xg

i ) is obtained by the following formulas:

b
_

i ,g ¼ H y
i ,gO (12)

H i ,g ¼
g(w1,i ,g � a1 þ bl,i,g) � � � g(wL,i ,g � a1 þ bL,i,g)

..

. . .
. ..

.

g(w1,i ,g � aN þ bl,i ,g) � � � g(wL,i ,g � aN þ bL,i,g)

2
64

3
75

N�L

(13)

f xg
i

� � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

s¼1

�����os �
XL

l¼1

b
_

l ;i ;g gðwl ;i ;g � as þ bl ;i ;gÞ
�����

2

2

vuut (14)

where N is the number of training samples; os is the outputs of the sth training sample; H i ,g is the hidden-layer output matrix;
and Hy

i ,g represents the Moore–Penrose generalized inverse of H i ,g.
Step 5: Population updating. Obtain the global best-known or worst-known sparrows of the swarm, as well as the best-known

locations of all the producers. Next, compute the necessary computation parameters to update all the sparrows ’ positions.
Step 6: Set g¼ gþ 1. If the maximum iteration is met, go to Step 4 for the next cycle; otherwise, the global best sparrow is

treated as the ideal parameters of the hidden layer and then the Moore –Penrose generalized inverse method is used to obtain

the hidden-output weights. The optimized ELM model by far is obtained for applications.
3. CASE STUDIES

3.1. Engineering background

To test the feasibility of the proposed method, the Yangtze River of China is selected as the case study. The � ood events at

Yangtze River usually occur in the wet season between May and October, while the other months belong to the dry season.
During the � ood season, the spatial–temporal distribution of rainfall is largely affected by monsoon activities and subtropical
anticyclones. Meanwhile, the many huge reservoirs represented by the Three Gorges project, the world ’s largest hydropower

plant, are put into operation in succession, resulting in great changes in runoff features. As a result, it becomes more and more
dif � cult to accurately forecast the runoff time series under the changing environment.

The daily runoff time series collected from three hydrological stations located on the Yangtze River are used for compara-
tive study. The three hydrological stations (A ∼ C) play an important role in monitoring the water changing tendency and

guaranteeing the safe operation of Yangtze River. Specially, hydrological station B is located on the south tributary, while
hydrological stations A and C are located on the mainstream of Yangtze River. The water at stations A and B � ows to station
C. Figure 3 illustrates the studied daily runoff time series of the three hydrological stations. The forecasting model should have

strong adaptive capacities to respond to the obvious differences of the runoff series at the three hydrological stations. For the
runoff time series of each hydrological station, the collected data is divided into a different sub-dataset, where the � rst 70% of
the data is used for training and validating the model ’s parameter, while the other data is used for testing.

3.2. Performance evaluation indicators

To fully show the forecasting ability of the proposed method, several evaluation indexes are used to analyze the prediction
level. Root mean squared error (RMSE) is chosen as the � rst evaluation index to measure the model ’s performance in
high � ow, which is de � ned as below:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼1

(yi � ~yi )
2

vuut (15)

where yi and ~yi are the ith target and predicted data; and n is the amount of data for comparison.
The second index is set as the mean absolute percentage error (MAPE) for measuring the proportional error of the devel-

oped model. MAPE is often sensitive to the prediction error of large-magnitude data but insensitive to that of small-magnitude
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Figure 3 | Daily runoff series of the three hydrological stations: (a) station A, (b) station B, (c) station C.
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data. The MAPE de� nition is given as:

MAPE ¼ 1
n

Xn

i¼1

~yi � yi

yi

����
����� 100% (16)

The third index is chosen as the coef � cient of correlation ( R) for re � ecting the linear relationship between the target and
predicted data, which is de � ned as below:

R ¼

Pn
i¼1

[(yi � yavg)(~yi � ~yavg)]ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

(yi � yavg)
2(~yi � ~yavg)

2

s (17)

where yavg and ~yavg denote the mean value of all the target and predicted data.
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The last index is set as the Nash–Sutcliffe ef � ciency (CE) for assessing the predictive capability of the developed model,

which is de � ned as below:

CE ¼ 1 �

Pn
i¼1

(yi � ~yi )
2

Pn
i¼1

(yi � yavg)
2

(18)

3.3. Comparison with the ELM method at station A

Table 1 lists multiple-step-ahead forecasting results of the ELM method and the hybrid method at both training and testing
phases for station A. It can be clearly seen that at the same forecasting period, the proposed method obtains the best results
among all the forecasting periods; with the increasing number of the forecasting period, the performances of all the forecast-
ing methods become gradually worse while the results of the proposed method are still better than those of the ELM method.

For instance, in the training phase, the proposed method makes about 15.70% and 16.62% improvements in the MAPE value
for the one-step and two-step forecasting periods; as the forecasting period increases from 1 to 6, the RMSE value of the pro-
posed method is increased from 577.774 to 1,105.495 at the testing phase, better than that of the ELM model from 656.59 to

1,146.196. Hence, it can be concluded that the organic combination of the SSA and ELM methods can effectively improve the
forecasting results.

Figure 4 shows the multiple-step-ahead forecasting results of various methods for daily runoff of station A at the testing

period. The two methods can effectively track the variation tendency of runoff series on the whole-time window, demonstrat-
ing the feasibility of the extreme learning machine method in stream � ow prediction. On the other hand, the standard ELM
method is not as good as the proposed method at the same forecasting period because its correlation coef � cient values are

obviously smaller than those of the hybrid method. In addition, with the increasing forecasting period, the correlation coef � -
cient values of the proposed method are slowly reduced while the decreasing amplitudes of the ELM method in the
correlation coef � cient value are relatively large. Thus, the proposed method can make effective improvements on the robust-
ness of the ELM method.

The relative forecasting errors of the two methods for daily stream � ow at station A during the testing phase are drawn in
Figure 5. As the forecasting period is equal to 1, the relative forecasting errors of the two methods are rather close; in the same
forecasting period, the relative forecasting error of the ELM method varies in a relatively large zone in comparison with that

of the proposed method; in addition, with the increasing forecasting period, the relative forecasting errors of the two methods
gradually become larger. The reason lies in that for a long-term forecasting task, more uncertain factors are involved in the
complex hydrological process and thereby it becomes much more dif � cult for the forecasting method to capture the dynamic

change of runoff. Hence, the proposed method using SSA to optimize the parameters of the ELM model can produce satis-
factory forecasting results.
Table 1 | Multi-step-ahead forecasting results of various forecasting models with different inputs at station A

Forecasting period Model

Training Testing

RMSE MAPE R CE RMSE MAPE R CE

τ¼ 1 ELM 828.001 21.113 0.890 0.792 656.590 19.337 0.887 0.786
Proposed 677.504 17.798 0.928 0.860 577.774 17.027 0.913 0.834

τ¼ 2 ELM 1,127.157 37.799 0.784 0.614 877.421 31.331 0.786 0.617
Proposed 1,046.716 31.518 0.817 0.667 835.184 27.282 0.809 0.653

τ¼ 3 ELM 1,295.671 52.177 0.700 0.490 997.539 42.134 0.712 0.505
Proposed 1,232.407 40.925 0.734 0.538 952.819 34.205 0.742 0.549

τ¼ 4 ELM 1,373.460 56.665 0.653 0.426 1,050.117 45.324 0.673 0.452
Proposed 1,334.638 47.605 0.677 0.458 1,020.208 39.312 0.696 0.482

τ¼ 5 ELM 1,432.996 62.165 0.613 0.376 1,095.431 49.764 0.636 0.403
Proposed 1,391.922 51.821 0.641 0.411 1,063.061 42.662 0.664 0.438

τ¼ 6 ELM 1,506.925 71.634 0.557 0.310 1,146.196 57.730 0.592 0.347
Proposed 1,462.935 57.607 0.591 0.349 1,105.495 48.027 0.629 0.392
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Figure 5 | Relative forecasting errors of the two methods for station A at the testing phase.

Figure 4 | Multi-step-ahead forecasting results of various forecasting models for station A at the testing phase.
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Table 2 | Statistical indexes of multi-step-ahead forecasting results of various forecasting models with different inputs at station B

Forecasting period Model

Training Testing

RMSE MAPE R CE RMSE MAPE R CE

τ¼ 1 ELM 2,524.510 9.206 0.964 0.929 2,156.296 8.104 0.964 0.929
Proposed 1,848.003 6.521 0.981 0.962 1,591.868 6.081 0.981 0.962

τ¼ 2 ELM 3,733.924 14.214 0.919 0.844 3,204.370 12.996 0.919 0.844
Proposed 3,391.754 12.544 0.934 0.872 2,905.577 11.244 0.934 0.872

τ¼ 3 ELM 4,475.360 24.004 0.881 0.777 3,931.205 19.754 0.875 0.765
Proposed 4,078.582 15.834 0.903 0.814 3,530.244 14.615 0.901 0.811

τ¼ 4 ELM 4,750.504 24.434 0.865 0.748 4,188.029 20.857 0.857 0.734
Proposed 4,584.702 20.083 0.875 0.766 4,032.888 18.434 0.868 0.753

τ¼ 5 ELM 4,868.630 24.747 0.858 0.736 4,308.272 21.549 0.848 0.718
Proposed 4,722.937 21.117 0.867 0.751 4,154.468 19.970 0.860 0.738

τ¼ 6 ELM 5,025.318 26.161 0.848 0.718 4,447.283 22.855 0.837 0.700
Proposed 4,858.154 22.350 0.858 0.737 4,284.134 21.268 0.850 0.721
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3.4. Comparison with the ELM method at station B

Table 2 lists the multiple-step-ahead forecasting results of the ELM method and the hybrid method at both training and testing

phases for station B. It can be found that the hybrid method outperforms the ELM methods in terms of various
Figure 6 | Multi-step-ahead forecasting results of various forecasting models for station B at the testing phase.
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statistical indexes at both training and testing phases, proving that the SSA method can effectively improve the network ’s com-

pactness. For instance, as the forecasting period is increased from 1 to 3, our method betters the ELM method with approximately
26.18%, 9.32% and 10.20% improvements in the RMSE value at the testing phase. Thus, the hybrid method is an effective hydro-
logical time series forecasting tool that can provide better performance than the standard ELM method.

Figure 6 shows the multiple-step-ahead forecasting results of various methods for daily runoff of station B in the testing period.
For the two methods, the variation tendency of runoff time series is well simulated in the testing phase, while the standard
ELM method is inferior to the proposed method due to its smaller correlation coef � cient value. Therefore, it can be concluded
that the generalization ability of the standard ELM method can be sharply improved by the SSA method.

Figure 7 shows the peak � ows of the various methods for station B at the testing phase. It can be clearly seen that the pro-
posed method can obtain better forecasting results than the control methods. For the � rst forecasting period, the hybrid
method makes about 14.95% underestimation in the forecasting error of the peak � ow, smaller than the 26.27% of ELM.

Hence, our method can effectively yield reliable hydrological forecasting information to provide strong technical support
for the decision-making process of the water resources system.

3.5. Comparison with different evolutionary algorithms at station C

Table 3 gives multiple-step-ahead forecasting results of the ELM method and the hybrid method at both training and testing

phases for station C. Figure 8 shows the multiple-step-ahead forecasting results of the various methods for daily runoff of
station C in the testing period. The hybrid method provides better results than the ELM methods with respect to various stat-
istical indexes. Thus, the hybrid method combining the ELM and SSA method is an effective tool for hydrological time series

forecasting.
Figure 7 | Detailed results of various forecasting models for station B at the testing phase.

Table 3 | Statistical indexes of one-step-ahead forecasting results of various forecasting models with different inputs at station C

Method

Training Testing

RMSE MAPE R CE RMSE MAPE R CE

ELM 2,618.2055 8.8309 0.9718 0.9440 2,321.1800 8.7469 0.9737 0.9476

ELM-GA 1,575.7859 6.9297 0.9899 0.9797 1,457.6769 6.5555 0.9897 0.9793

ELM-DE 1,787.2459 8.0147 0.9871 0.9739 1,642.8204 7.5818 0.9870 0.9738

ELM-PSO 1,462.1992 5.7864 0.9913 0.9825 1,381.9364 5.7689 0.9908 0.9814

ELM-GSA 1,393.0435 5.5704 0.9922 0.9842 1,321.0378 5.5150 0.9916 0.9830

Proposed 1,332.3079 5.3211 0.9929 0.9855 1,296.9795 5.4292 0.9920 0.9836
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Figure 8 | One-step-ahead forecasting results of various forecasting models for station C at the testing phase.
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4. CONCLUSION

In this paper, an effective evolutionary extreme learning machine based on the sparrow search algorithm is developed to
accurately forecast hydrological time series. Speci � cally, the sparrow search algorithm is used to search for satisfying com-
binations of the input-hidden weights as well as hidden biases, while the Moore –Penrose generalized inverse method is

chosen to analytically obtain the hidden-output weights. In this way, the developed method has a higher probability to
� nd a better network structure than the standard ELM model without any parameter tunning. The developed method success-
fully forecasts the runoff time series of three hydrological stations in China. The experimental results show that the developed

method is superior to several traditional methods with respect to various performance evaluation indexes. Thus, a novel and
practical evolutionary extreme learning machine model using swarm intelligence is developed to handle the complex hydro-
logical forecasting task.

On the other hand, the application of the proposed method may be limited in practice since it is rather dif � cult to deter-
mine the optimal parameters of the neural network model in theory while there are also big differences in the characteristic
information of the hydrological elements at different places. Considering the rapid development of computer technology, the

prospects of the proposed method can be improved by introducing more effective soft computing methods or developing
more robust modi � ed strategies. In addition, combinations of the newly developed signal processing technique can also be
used to improve the performance of the proposed method.
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