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ABSTRACT

Water demand prediction is crucial for effective planning and management of water supply systems to handle the problem of water scarcity.

Taking into account the uncertainties and imprecisions within the framework of water demand forecasting, the uncertain time series predic-

tion method is introduced for water demand prediction. Uncertain time series is a sequence of imprecisely observed values that are

characterized by uncertain variables and the corresponding uncertain autoregressive model (UAR) is employed to describe it for predicting

future values. The main contributions of this paper are shown as follows. Firstly, by defining the auto-similarity of uncertain time series, the

identification algorithm of UAR model order is proposed. Secondly, a new parameter estimation method based on the uncertain programming

is developed. Thirdly, the imprecisely observed values are assumed as the linear uncertain variables and a ratio-based method is presented

for constructing the uncertain time series. Finally, the proposed methodologies are applied to model and forecast Beijing’s water demand

under different confidence levels and compared with the traditional time series, i.e. ARIMA method. The experimental results are evaluated

on the basis of performance criteria, which shows that the proposed method outperforms over the ARIMA method for water demand pre-

diction.
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HIGHLIGHTS

• Considering the uncertainty of water demand, the uncertain time series method for demand estimation of water resources is presented.

• The auto-similarity of uncertain time series is defined, and the identification algorithm of uncertain autoregressive model order is proposed.

• An uncertain programming approach to estimate the parameters of model is proposed.

• The construction of liner uncertain time series is investigated due to the interval-valued data frequently encountered in real life.
1. INTRODUCTION

Water is an indispensable natural resource on our planet, which plays an important role in man’s life and activity. Apart from
drinking and personal hygiene, water is still a necessary resource for agricultural and industrial production, economic and
ecological development (Deng et al. 2015; Liu et al. 2015). However, due to climate change, socio-economic development

and population growth, water consumption (especially for freshwater) is growing rapidly, and water supply is facing many
challenges (Choksi et al. 2015), especially the problem of water scarcity (Frederick 1997; Pahl-Wostl 2007; Arnell &
Lloyd-Hughes 2014; Wang et al. 2015). This has led to the need for effective planning, managing and operating of finite
water resources (Oduro-Kwarteng et al. 2009; Wang et al. 2018). Therefore, water demand forecasting is a fundamental

phase for optimal allocation of water resources and aims to provide the simulated view of future demand, which can
assist decision makers in devising appropriate management schemes to relieve the conflict between growing demand and lim-
ited supply of water resources. To this end, many researchers have proposed different methods to model and forecast water

demand.
Time series analysis is one of the commonly used methods for water demand prediction. It was proposed by Box and

Jenkins who considered the dependence among the data. The model, namely, ARIMA, is regarded as a classical forecasting

technique, describing a predicted value as a linear function of previous data and random errors and including a cyclical or
seasonal component. For example, Maidment et al. (1985) applied the time series model of daily municipal water use as a
function of rainfall and air temperature for short-term forecasting of daily water use in Austin, Texas. Smith (1988) developed
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an autoregressive process with randomly varying mean to forecast the daily municipal water use, which captured the season-

ality and day-week effects in the model through the unit demand function. Aly & Wanakule (2004) utilized a deterministic
smoothing algorithm that considered level, trend and seasonality components of time series to estimate monthly water use.
Zhai et al. (2012) employed the time series forecasting method for predicting the future needs of water in Beijing by analyzing

the driving mechanism of changes of water consumption and water consumed structure.
In a time series modelling application, the determination of the model order is the fundamental step towards describing any

dynamic process and has been of considerable interest for a long time. Primarily, the determination method of the order of
time series model is based on the properties of sample autocorrelation coefficient and partial autocorrelation coefficient. Fol-

lowing that, several order selection approaches based on information theoretic criteria, such as Akaike’s information
criterion (AIC) (Akaike 1974), Akaike’s final prediction error (FPE) (Akaike 1970), minimum description length (MDL)
(Rissanen 1978; Liang et al. 1993) and so on, have been developed. Another common method, namely, the linear algebraic

method based upon the determinant and rank testing algorithms, was proposed in (Fuchs 1987) and Sadabadi et al. (2007).
Apart from two methods above, many other methods like bayesian information criterion (BIC) (Schwarz 1978), edge detec-
tion-based approach (Al-Smadi & Al-Zaben 2005), optimal instrumental variable (IV) algorithm (Sadabadi et al. 2009) and so

on were investigated to estimate the order of the time series model. Another estimation problem that has also been consider-
ably investigated is the aspect of coefficients determination of time series model. Commonly used methods for estimation of
unknown coefficients are least-squares (LS) estimator and maximum likelihood estimator (MLE) methods.

Based on the mentioned methods of model order identification and parameters estimation, the time series models can be
formulated to forecast water demand. It is worth noting that the aforementioned models provided a single valued forecast of
water demand, disregarding the uncertainty inherent in some situations where the influential factors that affect water demand
are uncertain, which leads to the uncertainty of water demand. This would limit the usefulness of these deterministic models.

One classical way to handle the uncertainty is to use a probabilistic model (Almutaz et al. 2012; Haque et al. 2014) based on
the Monte Carlo Stimulations (MCS) to obtain the distribution of water demand and provide an estimate of the overall uncer-
tainty in the predictions connected to uncertainty of influential factors.

Unfortunately, the distribution function obtained in most practical problems is not close enough to the actual frequency,
especially in the case of emergencies and lack of history data. In addition, the water demand data possess uncertain charac-
teristics caused by inaccuracies in measurements that need to be given by experts. This motivates us to apply a new

mathematical tool to deal with a range of uncertainties inherent in certain water demand data. Recently, uncertainty
theory was proposed by Liu (2009) in 2007, which is an effective way to solve previous problem for imprecisely observed
values. Based on the uncertainty theory, many researchers have done a lot of work including the determination of uncertain
distribution (Wang et al. 2012a; Wang & Peng 2014), hypothesis test (Guo et al. 2017; Ye & Liu 2021), and uncertain

regression analysis (Wang et al., 2012b; Lio & Liu 2018; Yao & Liu 2018; Ye & Liu 2020). Furthermore, the concept of uncer-
tain time series was firstly proposed by Yang & Liu (2019) based on uncertain theory in 2019. Like the traditional time series
analysis, there may be more than one approach to model time series. However, in their study, to describe uncertain time

series, the UAR model was employed to predict the future values based on previously imprecisely observed values that are
characterized in terms of uncertain variables. Based on the imprecisely observed values, Yang & Liu (2019) presented the
least-squares method to estimate the coefficients of the UAR model for predicting the carbon emission.

However, there are still many important issues that have not been touched. Firstly, the identification of UAR model order is
one of these, because it is the first step in estimating the model parameters. In the work of Yang & Liu (2019), the 2-order
UAR model was directly employed to forecast the future values. This method is too subjective and lacks a certain theoretical

foundation, which may reduce the prediction accuracy of the model. So, in this paper, by defining the auto-similarity of uncer-
tain time series, an algorithm for determining the optimal order of autoregressive model is designed. Secondly, its novel
parameter estimation approach is developed based on uncertain programming. Within the proposed method, the original pro-
blem including uncertain measure is transformed to the equivalent crisp mathematical programming. Thirdly, in our daily life,

most information is uncertain in nature. For example, water demand naturally takes different values with minimum water
demand and maximum water demand, which are inherently imprecisely observed values at times t, t ¼ 1, 2, � � � , n, respect-
ively, so the linear uncertain variables are selected for this purpose. Hence, it is a critical issue for us to determine the lower

and upper bounds for the actual data belonging to a range. That is, how to construct an uncertain time series based on
observed historical point data. Referring to the work of Huarng (2006), we introduced a novel ratio-based approach to deter-
mine the effective uncertain time series. Furthermore, the proposed uncertain time series forecasting approach is used to
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predict the urban water demand. As the second-largest city of China, Beijing’s rapid development has attracted many immi-

grants in recent years and water consumption is growing rapidly, which led to the increasingly sharp conflict between demand
and supply of water resources. This situation has become an important constraint on the sustainable development of Beijing.
Therefore, the water demand prediction of Beijing is a fundamental stage for water resources planning and utilization, which

contributes to harmonious development between the socio-economy and resources environment in Beijing. To further verify
the accuracy of the proposed methodologies, traditional time series method is selected as a competitor. The results are judged
on the basis of presented criteria, i.e. the prediction reliability and accuracy compared to ARIMA method.

The organization of this paper is as follows. Section 2 briefly presents some fundamental concepts properties and theorems

in uncertainty theory. Section 3 introduces the forecasting procedure of uncertain time series analysis. Section 4 provides an
experimental analysis to validate the effectiveness of the proposed method and access its performance by comparing with the
conventional time series (ARIMA) method. Finally, some conclusions are drawn.

2. PRELIMINARIES

In this section, we will present some fundamental definitions and theorems on uncertainty theory.
Definition 1. (Liu 2007) Let G be a nonempty set, and L be a σ-algebra over G. Each element L [ L is called an event. A

number M{L} indicates the belief degree that L will occur. Then M is called an uncertain measure if it satisfies the following
axioms:

Axiom 1: (Normality Axiom) M{G} ¼ 1 for the nonempty set G.
Axiom 2: (Duality Axiom) M{L}þM{Lc} ¼ 1 for any event L.
Axiom 3: (Subadditivity Axiom) For every countable sequence of events Li, i ¼ 1, 2, � � �, we have

M
[1
i¼1

Li

( )
�

X1
i¼1

M{Li} (1)

In this case, the triplet (G, L, M) is called an uncertainty space.
Then the product uncertain measure on the product σ-algebra L was defined by Liu (2009), producing the fourth axiom of

uncertain measure.
Axiom 4: (Product Axiom) Let (Gk, Lk, Mk) be uncertainty spaces for k ¼ 1, 2, � � �. The product uncertain measure M is an

uncertain measure satisfying

M
Y1
k¼1

Lk

( )
¼ ^1

k¼1
Mk{Lk} (2)

where Lk are arbitrarily chosen events from L for k ¼ 1, 2, � � � , respectively.
The concept of uncertain variable j was introduced by Liu as a measurable function from an uncertainty space (G, L, M) to

the set of real numbers.

Definition 2. (Liu 2007) An uncertain variable is a measure function j from an uncertain space (G, L, M) to the set of real
number. That is, for any Borel set B, the set

{j [ B} ¼ {g [ Ljj(g) [ B} (3)

is an event.
Definition 3. (Liu 2007) Let j1, j2, � � � , jn be uncertain variables, and let f be a real-valued measurable function. Then

j ¼ f(j1, j2, � � � , jn) is an uncertain variable defined by

j(g) ¼ f(j1(g), j2(g), � � � , jn(g)), 8g [ G: (4)

Definition 4. (Liu 2007) The uncertainty distribution F of an uncertain variable j is

F(x) ¼ M{j � x}, 8x [ R: (5)
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Definition 5. (Liu 2007) An uncertain variable is called linear if it has a linear uncertainty distribution

F(x) ¼
0, if x � a

(x� a)=(b� a), if a � x � b
1, if x � b

8<
: (6)

denoted by L(a, b) where a and b are real numbers with a , b.
Definition 6. (Liu 2010a) An uncertainty distribution F(x) is said to be regular if it is continuous and strictly increasing

function with respect to x at which 0 , F(x) , 1, and

lim
x!�1F(x) ¼ 0, lim

x!1F(x) ¼ 1: (7)

Definition 7. (Liu 2010a) Let j be an uncertain variable with regular uncertainty distribution F(x). Then the inverse func-
tion F�1(a) is called the inverse uncertainty distribution of j.

Example 1. The inverse uncertainty distribution of linear uncertain variable L(a, b) is

F�1(a) ¼ (1� a)aþ ab: (8)

Definition 8. (Liu 2007) Let j be an uncertain variable. Then the expected value of j is defined by

E[j] ¼
ðþ1

0
M{j � r}dr �

ð0
�1

M{j � r}dr (9)

provided that at least one of the two integral is finite.
Theorem 1. (Liu 2010a) Let j be an uncertain variable with regular uncertainty distribution F. Then

E[j] ¼
ðþ1

0
F�1(a)da: (10)

Theorem 2. (Liu 2010a) Let j and h be independent uncertain variables with finite expected values. Then for any real
number a and b, we have

E[ajþ bh] ¼ aE[j]þ bE[h:] (11)

Theorem 3. (Liu 2010b) Let j1, j2, � � � , jn be independent uncertain variables with regular uncertainty distributions
F1, F2, � � � , Fn, respectively. If f(j1, j2, � � � , jn) is strictly increasing with respect to j1, j2, � � � , jm and strictly decreasing
with respect to jmþ1, jmþ2, � � � , jn, then

j ¼ f(j1, j2, � � � , jn) (12)

has an inverse uncertainty distribution

C�1(a) ¼ f(F�1
1 (a), � � � , F�1

m (a), F�1
mþ1(1� a), � � � , F�1

n (1� a)): (13)

Theorem 4. (Liu 2010b) Let j1, j2, � � � , jn be independent uncertain variables with regular uncertainty distributions
F1, F2, � � � , Fn, respectively. If constraint function f(x, j1, j2, � � � , jn) is strictly increasing with respect to j1, j2, � � � , jm and
strictly decreasing with respect to jmþ1, jmþ2, � � � , jn, then

M{ f(x, j1, j2, � � � , jn) � 0} � a (14)
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holds if and only if

f(x, F�1
1 (a), � � � , F�1

m (a), F�1
mþ1(1� a), � � � , F�1

n (1� a)) � 0: (15)
3. UNCERTAIN TIME SERIES FORECASTING METHOD

Uncertain time series was proposed by Yang & Liu (2019) in 2019 so as to predict the future values based on previously
imprecisely observed values that are described by uncertain variables. The basic definition of uncertain time series is as

follows.
Definition 10. (Yang & Liu 2019) An uncertain time series is a sequence of imprecisely observed values that are charac-

terized in terms of uncertain variables. Mathematically, an uncertain time series is represented by

X ¼ {X1, X2, � � � , Xn} (16)

where Xt are imprecisely observed values (i.e. uncertain variables) at times t, t ¼ 1, 2 � � � , n, respectively.
After giving the uncertain time series, it is necessary to formulate function relations between the observations at time t and

those at previous times to describe uncertain time series. Generally, the relationship between uncertain variables can be
expressed by the following function

Xt ¼ f(Xt�1, Xt�2, � � � , Xt�p)þ 1t, t ¼ pþ 1, pþ 2, � � � n (17)

According to the research (Yang & Liu 2019), the method for modelling uncertain time series is the autoregressive model,

Xt ¼ w0 þ w1Xt�1 þ w2Xt�2 þ � � � þ wpXt�p þ 1t, t ¼ pþ 1, pþ 2, � � � , n (18)

where w0, w1, � � � , wp are unknown parameters, 1t is an uncertain variable, and p is called the order of the autoregressive
model. In order to recognize a good UAR model as a forecast tool for the given data, the following three problems need
to be solved which include: the determination of order of UAR model, parameter estimation and the construction of uncer-
tain time series. In the following subsections, all the detailed procedure of using our methodology to make predictions is

presented, which can be divided into four stages, clearly differentiated in Figure 1.
3.1. The determination of the order of UAR model

During the modeling process of uncertain time series, a fundamental phase is the identification of order of UAR model. Gen-
erally, we make predictions about the future to make strategies, which should not only get information from the data before
but also get information from the near past, although they may not have the same effect strength. Therefore, it is crucial to find

an appropriate order to determine the lagged variables existing in the model and establish the truly effective model. If the
model order is not recognized efficiently, the accuracy of the predictions produced by the model will be compromised.
Just like traditional time series analysis, correlation is a very important concept used in analyzing data in the time series.

We often identify the model based on the trailing or truncating properties of the autocorrelation coefficient and the partial
correlation coefficient. However, for the imprecisely observed values represented by uncertain variables, the traditional stat-
istical method above is problematic. In this subsection, we introduce an order determination method based on the notion of
similarity, which is generated from the distance measure defined by Li & Liu (2015). It can be represented by

Dp(j, h) ¼ (Ejj� hjp)
1

pþ1
, p . 0 (19)

where j and h are uncertain variables. It is easy to understand that the distance between uncertain variables essentially
reflects their difference. The greater the distance is, the smaller the similarity is, and vice versa. Here, we just set out one,
i.e. p ¼ 1, as the application for the following definitions.
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3.1.1. Basic definitions

Based on the above distance measure, the average distance between two uncertain variables in the uncertain time series is
defined as below.

Definition 9. Average distance
Let {Xt}(t ¼ 1, 2, � � � , n) be an uncertain time series and X1, X2, � � � , Xn be imprecisely observed values characterized in

terms of independent uncertain variables with regular uncertain distributions F1, F2, � � � , Fn respectively, m denotes the
://iwaponline.com/ws/article-pdf/22/3/3254/1100486/ws022033254.pdf
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experimental order. Then the average distance between uncertain variables Xt and Xt�k (k ¼ 1, 2, � � �m) is defined as

ADk ¼ 1
n� k

Xn
t¼kþ1

D1(Xt, Xt�k)

¼ 1
n� k

Xn
t¼kþ1

[EjXt �Xt�kj]
1
2, k ¼ 1, 2, � � � , m:

(20)

To further provide ease of use, the study applies the following definition to make some adjustments.
Definition 10. Auto-similarity of uncertain time series
Let ADk(k ¼ 1, 2, � � � , m) be the average distance between uncertain variables Xt and Xt�k (k ¼ 1, 2, � � � , m) of uncertain

time series{Xt}(t ¼ 1, 2, � � � , n), m denotes the experimental order. Then the auto-similarity of uncertain time series is defined
as

ASk ¼ 1�
ADk � min

1�k�m
{ADk}

max
1�k�m

{ADk}� min
1�k�m

{ADk}
, k ¼ 1, 2, � � � , m: (21)

It is clear that ASk [ [0, 1], k ¼ 1, 2, � � � , m. Definition 10 shows that the greater ASk is, the higher the similarity between
the uncertain variables Xt and Xt�k is.
3.1.2. Model order selection algorithm

According to the above definitions, an algorithm for determining the appropriate order of UAR model is presented as follows.
Step 1. We set k ¼ 1 as an alternative order.
Step 2. Determine the confidence level a.

Step 3. If jASk �ASkþ1j � a, then select the (kþ 1)th order to add the set of alternative order numbers. That is, enter into
Step 4.

If jASk �ASkþ1j . a and ASk . ASkþ1, then choose the kth order as the optimal order.

If jASk �ASkþ1j . a and ASk , ASkþ1, then into Step 4.
Step 4. Set k ¼ kþ 1 and return to Step 2.
Step 5. Optimal order obtained from Step 1 to Step 4 is regarded as the order of UAR model.

Step 6. If we cannot find the effective order until the predetermined experimental order m is reached, then let k ¼ 1.
We want to note again that the proposed algorithm is also presented in Figure 2.
3.2. A new parameter estimation method based on uncertain programming

Once the order of the model is determined, we need to estimate the parameters of the UAR model to make predictions. Based
on the imprecisely observed values, Yang & Liu (2019) investigated the least squares approach to estimate coefficients of the
UAR model. Different from the previous research, in this subsection, we will propose a new method of parameter estimation

based on uncertain programming, which can give more flexibility to the UAR model to make predictions. In general, we hope
that the given parameters should make the differences between the predicted values X̂t and observed values Xt as small as
possible. In uncertain time series model, let X1, X2, � � � , Xn be imprecisely observed values characterized in terms of indepen-

dent uncertain variables with regular uncertain distributions F1, F2, � � � , Fn, respectively. Then, the estimation of unknown
parameters w0, w1, � � � , wp in the UAR model

X̂t ¼ w0 þ w1Xt�1 þ w2Xt�2 þ � � � þ wpXt�p þ 1t, t ¼ pþ 1, pþ 2, � � � , n (22)
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Figure 2 | Flowchart of the algorithm for determining the model order.
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can solve the following programming model

min
Pn

t¼pþ1
at

subject to

M{(Xt � X̂t)
2 � at} � bt

t ¼ pþ 1, pþ 2, � � � , n

8>>>>><
>>>>>:

(23)

where at is the target variable and bt [ (0, 1) is a given level by the domain experts according to their experience knowledge.
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In order to obtain the optimal solution, we need to transform it into an equivalent deterministic model. The following theo-

rem will address this problem.
Theorem 5. The model (23) is equivalent to the crisp mathematical programming

min
Pn

t¼pþ1
at

subject to

F�1
t (bt)� w0 �

Pp
i¼1

wiY
�1
t�i(bt)

� �2

� at � 0

t ¼ pþ 1, pþ 2, � � � , n

8>>>>>>>><
>>>>>>>>:

(24)

where

Y�1
t�i(bt, wi) ¼

F�1
t�i(1� bt), if wi � 0

F�1
t�i(bt), if wi , 0

(
(25)

for i ¼ 1, 2, � � � , p:
Proof: It follows from Theorem 4 immediately.

3.3. The construction of uncertain time series

Uncertain time series was proposed so as to deal with such forecasting problems where the historical data are not crisp num-

bers but are imprecisely observed values. Besides, in practical cases, most traditional point data possess uncertainty
characteristics due to the measurement errors. For instance, the water demand variables that naturally take a finite set of
numerical values varying between a lower and upper bound are regarded as interval-valued variables, which stand for the
inaccuracies in measurements. For doing so, each interval-valued variable is assumed as the linear uncertain variable. How-

ever, for the same uncertain time series model, the difference of constructed intervals by adopting different ways can result in
different forecasting performance. So, how to use an efficient way to choose effective length of interval is especially critical to
improve uncertain time series forecasting performance. A key point in determining the proper length of interval is that they

should not too large or small. When an effective length of interval is too wide, the prediction results will be meaningless in the
uncertain time series. If the length is too small, the uncertain time series will become very close to the traditional time series
and the result is not intended. On the other hand, many traditional time series have the momentum to vibrate in a certain

period of time. Therefore, in the process of constructing uncertain time series, we should consider the trend information
of data of time series itself, which makes the determined interval series more reasonable and really reflects the variation ten-
dency of data of time series. By following the two requirements, in this subsection, we propose a new ratio-based approach to

determine the length of interval to obtain the high forecasting accuracy. The step of the algorithm of the method presented
can be given as follows:

Step 1. Take the first order of differences between any two consecutive observations yt � yt�1 for any yt and yt�1,
t ¼ 2, 3, � � � , n.

Step 2. Calculate relative differences rt ¼ (yt � yt�1)=yt�1 for all t, t ¼ 2, 3, � � � , n.
Step 3. Determine the lower and upper bounds of the initial value.
Let

yU1 � yL1 ¼ 1
n

Xn
t¼1

yt � 1
n

Xn
t¼1

yt

�����
����� (26)

and

yU1 þ yL1 ¼ 2y1: (27)

Step 4. Determine the lower and upper bounds on the interval series.
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Let

yLt ¼ yLt�1 � (1þ rt) (28)

and

yUt ¼ yUt�1 � (1þ rt) (29)

t ¼ 2, 3, � � � , n,

be the lower and upper bounds for observation yt at time t, t ¼ 2, 3, � � � , n respectively.

Step 5. Construct the uncertain time series. Following steps above, the interval-valued variables,
Xt ¼ {[yLt , y

U
t ]:y

L
t , y

U
t [ R, yLt , yUt }, t ¼ 1, 2, � � � , n, are obtained. We can consider each interval variable Xt at time t as the

linear uncertain variable with linear uncertain distribution L(yLt , y
U
t ). Then, an uncertain time series can be represented as

X ¼ {X1, X2, � � � , Xn}: (30)

4. CASE STUDY

This section presents the application of the proposed methods for water demand forecast in Beijing. In Section 4.1, the
location and dataset used in model development are given. Section 4.2 provides the implementations of the proposed uncer-

tain time series model. For the purpose of comparison, the ARIMA model is selected to contrast the forecasting performance,
and the classical measure methods are adopted to evaluate the forecast accuracy of the models in Section 4.3.

4.1. Location and dataset

In this work, the study area is located in Beijing. As the capital of China, Beijing is China’s political, cultural, and inter-

national communication center, located at the interlaced terrace of North China Plain and Mongolian Plateau. In Beijing,
drinking water is mainly supplied by the Yongdinghe and Chaobaihe rivers. As a result of China’s rapid development and
dense population, Beijing’s water demand consumption is increasing rapidly and Beijing is experiencing a shortage of

water resources. According to the Beijing Water Authority (BWA), the annual water resources per capita is less than
300 m3, which is only 12.5% of the national average and far below the internationally recognized minimum standard of
1000 m3 per year. This situation of increasing water demands and limited water resource supplies has also become the
vital restrictive factor affecting the socio-economic development and environmental health of Beijing for a long time into

the future. Therefore, it is particularly important to apply the proposed method to forecast the water demand in Beijing,
which contributes to the water resources planning and management in the near future.

All the research dataset of uncertain time series were obtained from Beijing Water Resources Bulletin during the time

period between 1988 and 2016. A total of 29 data points were collected and are shown in Table 1. In order to illustrate
the effectiveness of the proposed uncertain time series method, the data from 1988 to 2013 are used as an estimation
sample to determine the coefficients of the estimation model, while the rest of data are reserved as the hold-out sample,

used to test the model and access the performance of prediction.

4.2. Methodologies implementations

4.2.1. Construction of uncertain time series

As mentioned previously, water demand data are not crisp numbers but imprecisely observed values, so the data pre-proces-

sing is essential. For the purpose of implementation, we utilize the linear uncertain variables to describe the water demand
observations and construct the uncertain time series by following the algorithm in the previous subsection:

(1) Take the first order of differences between any two consecutive observations, which are listed in the fourth column of Table 1.
(2) Calculate the relative differences between any two consecutive observations. All the relative differences are listed in the

fifth column of Table 1.

(3) Determine the lower and upper bounds of the interval-valued series. Firstly, the initial interval is calculated as follows.
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Table 1 | Imprecisely observed data where L(a, b) represents linear uncertain variable

Observation t Time Total water demand yt(10
7m3) First order difference Relative difference yL

t yU
t Xt

1 1988 424 406 442 L(406, 442)

2 1989 446 22 0.05189 427 465 L(427, 465)

3 1990 411 �35 �0.0785 394 428 L(394, 428)

4 1991 423 12 0.0292 405 441 L(405, 441)

5 1992 464 41 0.0969 444 484 L(444, 484)

6 1993 452 �12 �0.0259 433 471 L(433, 471)

7 1994 459 7 0.0155 440 478 L(440, 478)

8 1995 449 �10 �0.0218 430 468 L(430, 468)

9 1996 400 �49 �0.1091 383 417 L(383, 417)

10 1997 403 3 0.0075 386 420 L(386, 420)

11 1998 404 1 0.0025 387 421 L(387, 421)

12 1999 417 13 0.0322 399 435 L(399, 435)

13 2000 400 �17 �0.0408 383 417 L(383, 417)

14 2001 389 �11 �0.0275 372 406 L(372, 406)

15 2002 346 �43 �0.1105 331 361 L(331, 361)

16 2003 358 12 0.0347 343 373 L(343, 373)

17 2004 346 �12 �0.0335 331 361 L(331, 361)

18 2005 345 �1 �0.0029 330 360 L(330, 360)

19 2006 343 �2 �0.0058 328 358 L(328, 358)

20 2007 348 5 0.0146 333 363 L(333, 363)

21 2008 351 3 0.0086 336 366 L(336, 366)

22 2009 355 4 0.0114 340 370 L(340, 370)

23 2010 352 �3 �0.0085 337 367 L(337, 367)

24 2011 360 8 0.0227 345 375 L(345, 375)

25 2012 359 �1 �0.0028 344 374 L(344, 374)

26 2013 364 5 0.01393 349 379 L(349, 379)
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By

yU1 � yL1 ¼ 1
n

Xn
t¼1

yt � 1
n

Xn
t¼1

yt

�����
�����

¼ 1
26

X26
t¼1

yt � 1
26

X26
t¼1

yt

�����
�����

¼ 1
26

X26
t¼1

jyt � 391j

¼ 36

(31)

and

yU1 þ yL1 ¼ 2� y1
¼ 848:

(32)
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we have

yL1 ¼ 406, yU1 ¼ 442: (33)

Then, it is obvious that X1 ¼ [406, 442]. We consider the initial interval-valued variable X1 as the linear uncertain variable
with linear uncertain distribution L(yL1 , y

U
1 ). Secondly, by following Step 3 in Section 3.3, the corresponding interval series can

be constructed as shown in Table 1. Thus, we can obtain an uncertain time series that are characterized in terms of linear

uncertain variables, i.e.

X ¼ {X1, X2, � � � , X26}: (34)
4.2.2. The determination of the model order

In the model order selection phase, different experimental orders are examined based on the definition of auto-similarity of

uncertain time series and the best one among them is selected. Generally, we set the maximum lagging order m ¼ 5. The
details of the calculation can be found in the following paragraphs.

Firstly, we assume that linear uncertain variables X1, X2, � � � , X26 are independent. According to Definition 9, the average

distance of the first order lag of all uncertain variables is calculated as follows

AD1 ¼ 1
25

X26
t¼2

D1(Xt, Xt�1)

¼ 1
25

X26
t¼2

[EjXt �Xt�1j]
1
2

¼ 1
25

X26
t¼2

ð1
0
jF�1

t (a)�F�1
t�1(1� a)jda

� �1
2

¼ 3:2075:

(35)

Similarly, we have,

AD2 ¼ 1
24

X26
t¼3

D1(Xt, Xt�2) ¼ 3:5781,
(36)

AD3 ¼ 1
23

X26
t¼4

D1(Xt, Xt�3) ¼ 4:2078,
(37)

AD4 ¼ 1
22

X26
t¼5

D1(Xt, Xt�4) ¼ 4:7491
(38)

and

AD5 ¼ 1
21

X26
t¼6

D1(Xt, Xt�5) ¼ 5:1953: (39)
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Then, min
1�k�5

{ADk} ¼ AD1, max
1�k�5

{ADk} ¼ AD5. It follows from Definition 10 that

AS1 ¼ 1, AS2 ¼ 0:8136, AS3 ¼ 0:4968, AS4 ¼ 0:2245, AS5 ¼ 0: (40)

By using the algorithm in Section 3.1, we can find the appropriate order.
Let a ¼ 0:2. Because jAS1 �AS2j ¼ 0:1864 , 0:2 ¼ a and jAS2 �AS3j ¼ 0:3186 . 0:2 ¼ a. At the same time

AS2 ¼ 0:1836 . 0:4968 ¼ AS3, thus the order of UAR model is k ¼ 2.
4.2.3. The parameter estimation for the UAR model

According to Section 4.2.2, we obtain the 2-order UAR model

X̂t ¼ w0 þ w1Xt�1 þ w2Xt�2 þ 1t, t ¼ 3, 4, � � � , 26: (41)

By using Theorem 5, we obtain the following mathematical programming model to estimate the unknown coefficients
wi(i ¼ 0, 1, 2):

min
P26
t¼3

at

subject to

((35þ 38� w1 þ 36� w2)� b3 þ 394� w0 � 465� w1 � 442� w2)
2 � a3

((36þ 35� w1 þ 38� w2)� b4 þ 405� w0 � 428� w1 � 465� w2)
2 � a4

..

.

((31þ 30� w1 þ 31� w2)� b26 þ 349� w0 � 374� w1 � 375� w2)
2 � a26

w0 . 0, w1 . 0, w2 . 0:

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

(42)

Let bt ¼ 0:75, (t ¼ 3, 4, � � � , 26). Then we obtain the optimal solution

(w0, w1, w2) ¼ (44:90, 0:81, 0:10) (43)

and the corresponding autoregressive model

X̂t ¼ 44:90þ 0:81Xt�1 þ 0:10Xt�2, t ¼ 3, 4, � � � , 26: (44)

According to different confidence levels (i.e. 0.75, 0.85, 0.90), different regression models can be established to compare
with the existing traditional time series model.
4.3. Comparison with the existing method

In this subsection, we apply the proposed UAR model to forecast the water demand of Beijing from 2014 to 2016. Following
the above forecasting model (Equation (44)), the forecasting result is an uncertain variable. However, in most cases, the
results we require are often crisp values, so the research uses the expected value of the uncertain variable as the predicted

value. The prediction results under different confidence levels (i.e. 0.75, 0.85, 0.90) are presented in Table 2. In order to
further verify the effectiveness of the proposed methodologies, the traditional ARIMA time series method is selected as a com-
petitor to contrast the forecasting performance. According to the historical data of water demand from 1988 to 2013, the
result of ARIMA model is represented as follows

X̂t ¼ Xt�1 þ 1t: (45)

The performances of the models are evaluated based on the classical measure methods, i.e. average relative error (ARE)
and total absolute error (AE). Obviously, lower ARE and AE values lead to better performance. The definitions of all
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Table 2 | Predicted results of Beijing’s total water demand

Time Actual values ARIMA model

UAR model

bt ¼ 0:75 bt ¼ 0:85 bt ¼ 0:90

2014 375 361.59 375.64 383.74 385.74

2015 382 359.17 385.57 400.56 404.32

2016 388 356.75 398.53 416.54 422.04

Table 3 | Comparison of above models

Time

Absolute error Relative error

ARIMA model

UAR model

ARIMA model

UAR model

bt ¼ 0:75 bt ¼ 0:85 bt ¼ 0:90 bt ¼ 0:75 bt ¼ 0:85 bt ¼ 0:90

2014 13.41 0.64 8.74 10.74 0.0358 0.0017 0.0233 0.0286

2015 22.83 3.57 18.56 22.32 0.0598 0.0093 0.0486 0.0584

2016 31.25 10.53 28.54 34.04 0.0805 0.0271 0.0736 0.0877

Total predicted error 67.49 14.74 55.84 67.09

Maximum relative error 0.0805 0.0271 0.0736 0.0877

Average relative error 0.0587 0.0127 0.0485 0.0583
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these performance criteria are represented by

ARE ¼ 1
s

Xs

j¼1

ŷj � yj
yj

����
���� (46)

and

AE ¼
Xs

j¼1

jŷj � yjj (47)

where s is the total number of data needed to predict, ŷj and yj denote the predicted value and the actual observed value,

respectively.
Therefore, the prediction performance are shown in Table 3 and Figure 3. From the experimental results obtained, it can be

concluded that the proposed uncertain time series forecasting method has better forecasting performance than the ARIMA

method under the considered levels.
As far as the comparison between the proposed method under the 0.75 and 0.85 confidence levels and the ARIMA method

is concerned, the former outperforms the latter in all cases. The total prediction error is reduced by 78.15 and 17.26% respect-

ively, and the average relative error by 78.36 and 17.38% respectively. In addition, for the prediction error of each
observation, the proposed method under the 0.75 and 0.85 levels is smaller than the ARIMA method. Especially for the
associated 0.75 confidence level, the improvements of forecasting performance are more obvious.

When considering the comparison between the proposed method under the 0.90 confidence level and the ARIMA method

in all cases, we can see that the maximum prediction error of the proposed method is a little higher than the ARIMA method.
Overall, the former almost wins. The total prediction error is reduced by 0.59% and the average relative error by 0.68%. This
reduction is crucial in the planning and management of water supply systems.

Apart from the statistical criteria discussed above, we implement the forecasting trend to evaluate the performance of the
above methods. According to the current trend, Beijing’s total water demand was increasing from 2014 to 2016. However, the
prediction trend of the ARIMA method was declining. This is not in accordance with the reality of Beijing’s total water
://iwaponline.com/ws/article-pdf/22/3/3254/1100486/ws022033254.pdf



Figure 3 | Comparisons of prediction accuracy for water demand prediction.
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demand during 2014 and 2016. So, these predicted results may not provide support to the water resource management in the
near future. It is worthy to note that the predicted results of the proposed method could reflect the realistic water demand

trend in the short term and help the decision makers to devise reasonable management schemes.
5. CONCLUSION

In this study we presented a modified time series method for demand estimation of water resources in Beijing. Considering
the uncertainty of water demand in real life, we attempted to combine the uncertainty theory with a time series model, called

uncertain time series, to handle the above problems. In the presented method, we employed the UAR model to describe
uncertain time series for predicting future values. First, the auto-similarity of uncertain time series, as a principle of justifiable
recognition, is defined and the identification algorithm of determining the optimal model order is proposed, which enables

the estimation of the correct parameters of the model. Second, we propose an uncertain programming approach for estimat-
ing the parameters of the model. Then, the imprecisely observed values are assumed as the linear uncertain variables and a
ratio-based method is presented for constructing the uncertain time series. Finally, we tested the performance of the proposed
model and the traditional time series model (ARIMA) based on the statistical criteria. The results demonstrated that the pro-

posed model provided much better accuracy over the traditional model mentioned above for water demand predictions. The
possible reason is that the traditional model cannot effectively handle the imprecisely observed values, this allows the possi-
bility of the loss of effective information, which leads to the reduction of prediction accuracy.

Although the proposed UAR model has greatly improved the traditional water demand time series method, there are still
some limitations which need to be improved, such as the determination of the model order and the construction of the uncer-
tain time series. In the future, we will further study the algorithm optimization of model order, and provide better solutions for
om http://iwaponline.com/ws/article-pdf/22/3/3254/1100486/ws022033254.pdf
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the UAR model applications which improve the accuracy of forecast. On the other hand, we only investigate the construction

of linear uncertain time series due to the interval-valued data that are encountered frequently in multiple situations. Further
study may attempt to construct the normal uncertain time series to expand the application field of the model.

ACKNOWLEDGEMENTS

This work was supported by the National Natural Science Foundation of China (No.61873084) and the Foundation of Hebei
Education Department (No. ZD2017016).

DATA AVAILABILITY STATEMENT

All relevant data are included in the paper or its Supplementary Information.

REFERENCES

Akaike, H. 1970 Statistical predictor identification. Annals of Institute of Statistical Mathematics 22, 203–217.
Akaike, H. 1974 A new look at the statistical model identification. IEEE Transactions on Automatic Control AC-19 (6), 716–723.
Almutaz, I., Ajbar, A., Khalid, Y. & Ali, E. 2012 A probabilistic forecast of water demand for a tourist and desalination dependent city: case of

Mecca, Saudi Arabia. Desalination 294, 53–59.
Al-Smadi, A. & Al-Zaben, A. 2005 ARMA model order determination using edge detection: a new perspective. Circuits, Systems and Signal

Processing 24 (6), 723–732.
Aly, A. & Wanakule, N. 2004 Short-term forecasting for urban water consumption. Water Resources Planning and Management 130,

405–410.
Arnell, N. & Lloyd-Hughes, B. 2014 The global-scale impacts of climate change on water resources and flooding under new climate and

socio-economic scenarios. Climatic Change 122, 127–140.
Choksi, K. N., Sheth, M. A. & Mehta, D. 2015 To assess the performance of Sewage Treatment Plant: a case study of Surat city. International

Journal of Engineering and Technology (IRJET) 2 (08), 1071–1075.
Deng, W., Wang, G. & Zhang, X. 2015 A novel hybrid water quality time series prediction method based on cloud model and fuzzy

forecasting. Chemometrics and Intelligent Laboratory Systems 149, 39–49.
Frederick, K. D. 1997 Adapting to climate impacts on the supply and demand for water. Climatic Change 37 (1), 141–156.
Fuchs, J. J. 1987 On estimating the order of an ARMA process. Automatica 23 (6), 779–782.
Guo, H., Wang, X. & Gao, Z. 2017 Uncertain hypothesis testing for two experts empirical data. Mathematical and Computer Modelling 55,

1478–1482.
Haque, M. M., Rahman, A., Hagare, D. & Kibria, G. 2014 Probabilistic water demand forecasting using projected climatic data for Blue

Mountains water supply system in Australia. Water Resources Management 294, 53–59.
Huarng, K. 2006 Ratio-based lengths of intervals to improve fuzzy time series forecasting. IEEE transactions on systems. Man, and

Cybernetics-Part B: Cybernetics 36, 328–340.
Li, X. & Liu, Y. 2015 Distance and similarity measures between uncertain variables. Journal of Intelligent and Fuzzy Systems 28 (5),

2073–2081.
Liang, G., Wilkes, D. M. & Cadzow, J. A. 1993 ARMA model order estimation based on the eigenvalues of the covariance matrix. IEEE

Transactions on Signal Processing 41 (10), 3003–3009.
Lio, W. & Liu, B. 2018 Residual and confidence interval for uncertain regression model with imprecise observations. Journal of Intelligent

and Fuzzy Systems 35 (2), 2573–2583.
Liu, B. 2007 Uncertain Theory, 2nd edn. Springer-Verlag, Berlin.
Liu, B. 2009 Some research problems in uncertain theory. Journal of Uncertain Systems. 3 (1), 3–10.
Liu, B. 2010a Uncertain Theory: A Branch of Mathematics for Modeling Human Uncertainty. Springer-Verlag, Berlin.
Liu, B. 2010b Uncertain risk analysis and uncertain reliability analysis. Journal of Uncertain Systems 4 (3), 163–170.
Liu, X., Hen, Y., Guo, Y., Li, S. & Guo, B. 2015 Modeling demand/supply of water resources in the arid region of northwestern China during

the late 1980s to 2010. Geographical Sciences 25 (5), 573–591.
Maidment, D. R., Miaou, S. P. & Crawford, M. M. 1985 Transfer function models of daily urban water use. Water Resources Research 21 (4),

425–432.
Oduro-Kwarteng, S., Nyarko, K., Odai, S. & Aboagye-Sarfo, P. 2009 Water conservation potential in educational institutions in developing

countries: case study of a university campus in Ghana. Journal of Urban Water 6 (6), 449–455.
Pahl-Wostl, C. 2007 Transitions towards adaptive management of water facing climate and global change. Water Resources Management

21 (1), 49–62.
Rissanen, J. 1978 Modeling by shortest data description. Automatica 14, 465–471.
Sadabadi, M. S., Shafiee, M. & Karrari, M. 2007 Determination of the two-dimensional ARMA model order using rank test based approach.

Proceedings of 16th IEEE International Conference on Control Applications, 1156–1160
Sadabadi, M. S., Shafiee, M. & Karrari, M. 2009 Two-dimensional ARMA model order determination. ISA Transactions 48, 247–253.
://iwaponline.com/ws/article-pdf/22/3/3254/1100486/ws022033254.pdf

http://dx.doi.org/10.1007/BF02506337
http://dx.doi.org/10.1109/TAC.1974.1100705
http://dx.doi.org/10.1016/j.desal.2012.03.010
http://dx.doi.org/10.1016/j.desal.2012.03.010
http://dx.doi.org/10.1007/s00034-005-0808-1
http://dx.doi.org/10.1061/(ASCE)0733-9496(2004)130:5(405)
http://dx.doi.org/10.1007/s10584-013-0948-4
http://dx.doi.org/10.1007/s10584-013-0948-4
http://dx.doi.org/10.1016/j.chemolab.2015.09.017
http://dx.doi.org/10.1016/j.chemolab.2015.09.017
http://dx.doi.org/10.1023/A:1005320504436
http://dx.doi.org/10.1016/0005-1098(87)90038-0
http://dx.doi.org/10.1109/TSMCB.2005.857093
http://dx.doi.org/10.3233/IFS-141486
http://dx.doi.org/10.1109/78.277805
http://dx.doi.org/10.3233/JIFS-18353
http://dx.doi.org/10.1007/s11442-015-1188-5
http://dx.doi.org/10.1007/s11442-015-1188-5
http://dx.doi.org/10.1029/WR021i004p00425
http://dx.doi.org/10.1080/15730620903108975
http://dx.doi.org/10.1080/15730620903108975
http://dx.doi.org/10.1007/s11269-006-9040-4
http://dx.doi.org/10.1016/0005-1098(78)90005-5
http://dx.doi.org/10.1016/j.isatra.2009.04.001


Water Supply Vol 22 No 3, 3270

Downloaded fr
by guest
on 11 Decemb
Schwarz, G. 1978 Estimating the dimension of a model. Annals of Statistics 6, 461–464.
Smith, J. A. 1988 A model of daily municipal water use for short-term forecasting. Water Resources Research 24 (2), 153–164.
Wang, X. & Peng, Z. 2014 Method of moments for estimating uncertainty distribution. Journal of Uncertainty Analysis and Applications

2 (1), 1–10.
Wang, X., Gao, Z. & Guo, H. 2012a Delphi method for estimating uncertainty distributions. Information: An International Interdisciplinary

Journal 15 (2), 449–460.
Wang, X., Gao, Z. & Guo, H. 2012b Uncertain linear regression model and its application. Journal of Intelligent Manufacturing 28 (3),

559–564.
Wang, X., Zhang, J., Shahid, S., He, R., Xia, X. & Mou, X. 2015 Potential impact of climate change on future water demand in Yulin city.

Northwest China. Mitigation and Adaptation Strategies for Global Change 20 (1), 1–19.
Wang, X., Zhang, J., Shahid, S., Bi, S., Elmahdi, A., Liao, C. & Li, Y. 2018 Forecasting industrial water demand in Huaihe River Basin due to

environmental changes. Mitigation and Adaptation Strategies for Global Change 23, 469–483.
Yang, X. & Liu, B. 2019 Uncertain time series analysis with imprecise observations. Fuzzy Optimization and Decision Making. 18 (3),

263–278.
Yao, K. & Liu, B. 2018 Uncertain regression analysis: an approach for imprecise observation. Soft Computing 22 (17), 5573–5578.
Ye, T. & Liu, B. 2021 Uncertain hypothesis test with application to uncertain regression analysis. Fuzzy Optimization and Decision Making.

https://doi.org/10.1007/s10700-021-09365-w.
Ye, T. & Liu, Y. 2020 Multivariate uncertain regression model with imprecise observations. Journal of Ambient Intelligence and Humanized

Computing. https://doi.org/10.1007/s12652-020-01763-z.
Zhai, Y., Wang, J., Teng, Y. & Zuo, R. 2012 Water demand forecasting of Beijing using the time series forecasting method. Geographical

Sciences 22 (5), 919–932.

First received 25 June 2021; accepted in revised form 9 November 2021. Available online 22 November 2021
om http://iwaponline.com/ws/article-pdf/22/3/3254/1100486/ws022033254.pdf

er 2024

http://dx.doi.org/10.1214/aos/1176344136
http://dx.doi.org/10.1029/WR024i002p00201
http://dx.doi.org/10.1186/2195-5468-2-5
http://dx.doi.org/10.1007/s11027-013-9476-9
http://dx.doi.org/10.1007/s11027-017-9744-1
http://dx.doi.org/10.1007/s11027-017-9744-1
http://dx.doi.org/10.1007/s10700-018-9298-z
http://dx.doi.org/10.1007/s00500-017-2510-1
http://doi.org/10.1007/s10700-021-09365-w
http://dx.doi.org/10.1007/s12652-020-01763-z
http://dx.doi.org/10.1007/s11442-012-0973-7

	Uncertain time series forecasting method for the water demand prediction in Beijing
	INTRODUCTION
	PRELIMINARIES
	UNCERTAIN TIME SERIES FORECASTING METHOD
	The determination of the order of UAR model
	Basic definitions
	Model order selection algorithm

	A new parameter estimation method based on uncertain programming
	The construction of uncertain time series

	CASE STUDY
	Location and dataset
	Methodologies implementations
	Construction of uncertain time series
	The determination of the model order
	The parameter estimation for the UAR model

	Comparison with the existing method

	CONCLUSION
	ACKNOWLEDGEMENTS
	DATA AVAILABILITY STATEMENT
	REFERENCES


