On the use of ARIMA models for short-term water tank levels forecasting
G. Viccione, C. Guarnaccia, S. Mancini and J. Quartieri

ABSTRACT
In this paper a statistical study on the time series of water levels measured, during 2014, in the water tank of Cesine, Avellino (Italy), is presented. In particular, the ARIMA forecasting methodology is applied to model and forecast the daily water levels. This technique combines the autoregression and the moving average approaches, with the possibility to differentiate the data, to make the series stationary. In order to better describe the trend, over time, of the water levels in the reservoir, three ARIMA models are calibrated, validated and compared: ARIMA (2,0,2), ARIMA (3,1,3), ARIMA (6,1,6). After a preliminary statistical characterization of the series, the models’ parameters are calibrated on the data related to the first 11 months of 2014, in order to keep the last month of data for validating the results. For each model, a graphical comparison with the observed data is presented, together with the calculation of the summary statistics of the residuals and of some error metrics. The results are discussed and some further possible applications are highlighted in the conclusions.

Key words | ARIMA models, short-term forecasting, time series analysis, urban water demand

INTRODUCTION
Urban water forecasting allows the making of predictions of water needs, allowing water distribution system (WDS) operators to handle production, pump energy and valve regulation. Demand estimation provides a useful predictive tool to water utilities for monitoring and controlling WDSs. Water demand, in the specific context of public water supply, is the total amount of water, including water losses to a certain extent, needed to supply customers, i.e. private households, public buildings, irrigation of public gardens, sewer cleaning, etc., within a time interval. A water demand estimation must ensure nodal demands while satisfying water quality and pressure levels across the network. A number of factors influence water demand, including population growth (residential, fluctuating), economic income, industry (size, technology involved, production types), local climate influencing seasonal demand patterns, and price changes. Water demand is strongly related to water tank level, according to the well-known continuity equation. Let $V_i(t)$ be the volume of water inside the tank at time t, $h(t)$ be the water level inside the tank and Q_i the generic flow rate (for instance positive if it enters the tank, negative otherwise). The continuity equation coupled with the tank law read respectively:

$$\frac{dV_i(t)}{dt} = \sum_{i=1}^{m} Q_i(t)$$

(1)

$$\frac{dV_i(t)}{dt} = A_t \frac{dh_i(t)}{dt}$$

(2)

where A_t is the net surface of the tank of constant horizontal section. From the combination of Equations (1) and (2), it
follows that there is a straight relation between flow rates and the water level.

In water applications, forecasting, even if complex, is beneficial for many reasons. First of all, investments in water supply systems can be extremely expensive, involving millions to hundreds of millions of euros, thus implying the need for forecasting a scenario which is naturally evolving because of the aging of pipelines, water tank degradation (Viccione et al. 2019a), water leakages, sizing, etc. Minimizing investment costs is therefore essential either in a short- or long-term interval when planning new developments or system expansion. Predictions are also relevant in processes for reviewing prices (Herrera et al. 2010). Secondly, as water is a precious resource to preserve for environmental and financial reasons, it is of interest to know in advance what the water demand is expected to be in the short term, allowing sustainable exploitation. In addition, short-term forecasting of water use helps in optimizing day-to-day utility operations and planning maintenance schedules (Shabani et al. 2018).

Several forecasting methods can be adopted in water applications, e.g.: per capita (or per customer) model: end-use models which rely on customer behaviour; regression models, e.g. as in Maidment et al. (1985), Zhou et al. (2000), Bakker et al. (2014) and Shabani et al. (2017), which are appropriate in the case of time-varying water prices, personal income, and population growth; and time-series/extrapolation models including averaging, trend analysis, exponential smoothing and autoregressive integrated moving average (ARIMA), in which the prediction is based on projecting past trends.

The latter forecasting technique is based on the Time Series Analysis (TSA) approach. These models range from straight averages of time series to relatively highly elaborated statistical models. The ones based on AutoRegressive Integrated Moving Average techniques, both Seasonal (SARIMA) and not (ARIMA), are powerful models able to predict the slope of data evolving in time (Box & Pierce 1970; Chatfield 1975; Box & Jenkins 1976). These techniques have been developed mainly in statistics, and then applied in economics, management, physics, and elsewhere (Milanato 2008; Manganelli & Tajani 2015). Some of the authors have applied the TSA deterministic decomposition and the ARIMA models to acoustical noise in urban areas (Guarnaccia et al. 2014a, 2014b, 2017) and in proximity of an airport, also in combination with a non-homogeneous Poisson distribution (Guarnaccia et al. 2016). Other applications by some of the authors to electric consumption by public transportation in Sofia, Bulgaria, and to air pollution in Nuevo Leon, Monterrey, Mexico, can be found respectively in Tepedino et al. (2015) and in Guarnaccia et al. (2014c).

Concerning water demand, water tank levels, inflows and outflows, extrapolation models usually rely on historical data on water use to forecast future trends. Statistical methods such as Multiple Linear Regression (MLR) and ARIMA models are commonly used for short-term urban water demand forecasting. Among the pioneers, Maidment & Miaou (1986) used ARIMA in the daily demand model based on a study of nine American cities. Soon after, Smith (1988) developed a time series model to forecast daily municipal water use in Washington, USA. Wong et al. (2010) applied seasonal autoregressive moving series models to analyse the structure of daily urban water consumption in Hong Kong as a function of rainfall. Two autoregressive integrated moving average models, one non-seasonal (daily, ARIMA model) and one seasonal (monthly, SARIMA model), to predict daily and monthly inflows into the Elephant Butte Reservoir, New Mexico, are adopted and discussed in Zamani Sabzi et al. (2018). A parallel adaptive weighting strategy of water consumption forecasting for the next 24–48 h, using univariate time series of potable water consumption, is proposed in Sardinha-Lourenço et al. (2018). Long-term forecasting of water consumption in the Hohoe municipality, Ghana, is proposed by Amponsah et al. (2015), using ARIMA as well. Suhartono and co-workers (Suhartono et al. 2018) proposed a hybrid class of methods based on Singular Spectrum Analysis (SSA) decomposition, Time Series Regression (TSR), and ARIMA, known as hybrid SSA-TSR-ARIMA, for water demand forecasting. A comparison among multiple linear (MLR) and nonlinear regression, Autoregressive Integrated Moving Average (ARIMA), Artificial Neural Network (ANN) and hybrid wavelet transforms and artificial neural network methods (WA-ANN) for urban water demand prediction in Montreal, Canada, was made by Adamowski et al. (2012). Other technique comparisons were made by
Mohammadi et al. (2005), de Lima et al. (2016), between ARIMA and ANN, and by Antunes et al. (2018) between machine learning and ARIMA. The latter paper concludes that it is difficult to affirm that one of the two techniques is always better than the other, since in some cases ARIMA performs better than machine learning and vice versa. The main conclusion is that in order to determine which strategy performs better, the peculiarities of the data of the case under study should be taken into account. Moreover, one of the most interesting features of ARIMA techniques is that they require as input only the measured data of the parameter that it is going to be forecast. This is a strong simplification with respect to machine learning approaches, which usually require several parameters in input.

This large literature about water demand and related parameters forecasting shows the high interest from the scientific community. Anyway, reservoir or tank water level prediction is very important in reservoir management, in order to support the decision system. For instance, Ashaary et al. (2015), Rani & Parekh (2014) and Valizadeh & El-Shafie (2013) underline the importance of predicting water reservoir levels, implementing interesting models based on ANN models. Nwobi-Okoye & Igboanugo (2013) perform daily water level predictions in a reservoir, comparing ANN and ARIMA techniques, concluding that the accuracy of the ANN model increases with increasing inputs, while the ARIMA model yields the best prediction in the considered dataset.

In this paper, ARIMA models are introduced as predictive tools for short-term daily average water tank level forecasting in a rural area. This study is motivated by the fact that, in Italy, especially in rural towns, a single water tank can be used to serve the small area. For larger towns, the methodology used in this paper can be easily extended to any number of interconnected tanks, opening the way to studies about the relations and the influence between the models applied in each tank. Very often the tanks are equipped with water level meters and more rarely with flow rate meters (Viccione et al. 2019b). Thus, the potential interest of water managers can be to take a decision on the basis of the post-processing of recorded water levels in tanks. By predicting short-term water levels, it is possible to prevent overflow discharges in water tanks and to optimize management plans for water distribution, e.g. during drought events.

METHODOLOGY

The Box–Jenkins/ARIMA forecasting model is here adopted. It is amongst the most popular procedures for time series analysis and forecasting application. The order of an ARIMA model is usually denoted by the notation ARIMA(p,d,q), where p is the order of the autoregressive part, d is the order of the differencing and q is the order of the moving-average process. The general source formula is:

$$\phi_p(B)(1-B)^d Y_t = \theta_q(B) e_t$$ \hspace{1cm} (3)

in which Y_t is the value of the series observed at the time t, B is the delay operator, ϕ are the autoregressive polynomials, θ are the moving average polynomials and e_t is the difference between the observed value Y_t and the forecast \hat{Y}_t at the time t.

Error metrics

To have a numerical comparison of the effectiveness of the proposed models, some error metrics can be adopted. In this paper, the authors use the Mean Percentage Error (MPE), the Coefficient of Variation of the Error (CVE) and the Mean Absolute Scaled Error (MASE), defined as follows.

The MPE measures the error distortion, i.e. it is able to describe if the model overestimates or underestimates the actual data:

$$MPE = \frac{\sum_{n=1}^{n} ((Y_t - \hat{Y}_t)/(Y_t))100}{n}$$ \hspace{1cm} (4)

The variation from the actual data in absolute value is given by the CVE, which provides the error dispersion:

$$CVE = \sqrt{\frac{\sum_{n=1}^{n} (e_t)^2}/(n-1)}$$ \hspace{1cm} (5)

where \bar{Y} is the mean value of the actual data in the considered time range. The MASE for seasonal time series is
computed according to the following formula (Franses 2016):

\[
MASE = \frac{1}{n} \sum_{t=1}^{n} \frac{|e_t|}{n - k \sum_{i=-k}^{0} |Y_{t-i}|}
\]

In this case, according to the features of the dataset that will be presented in the following sections, a simple naïve model based on the assumption that the data of today is the same as yesterday (\(\hat{Y}_t = Y_{t-1}\)) is applied, choosing a lag \(k = 1\) in the above formula (Hyndman & Athanasopoulos 2013).

DATASET ANALYSIS

This statistical study was applied on the time series of the levels observed in one of the reservoirs of the water supply system of the town of Avellino, Italy, located in the area of Cesine. Data refer to daily average water levels, expressed in metres, measured in 2014, from January to December. The original dataset was divided into two subsets: the first 333 values were used to perform the calibration and, therefore, the estimation of the model parameters (calibration dataset), the remaining ones were used for the validation phase (validation dataset).

The calibration dataset runs from 2 January 2014 to 30 November 2014. It shows some missing values, due to the occurrence of holidays and other, not identified, events. So, in the first 333 days of the year only 280 measurements were acquired. The last month of 2014, from 1 to 31 December, was used for validation of the model. This subset is made of 31 data: 26 measured and five imputed by calculating the average of the two closest available measurements as already explained above.

The summary statistics of the 280 calibration data (Table 1) show a low value of the standard deviation, if compared with the average of the levels. Thus, the series seems fairly regular over time, without frequent changes of great relevance. Furthermore, since the values of asymmetry and kurtosis are very close to zero, the data can be considered normally distributed, as extracted from a normal, or Gaussian, population.

Then, the calibration dataset was reconstructed by imputing the missing values with the average of the immediately preceding and the immediately following one. Generally, for not-seasonal time series such as the one under study, the imputation technique offers good results since the linear interpolation between two contiguous values takes into account the temporal location of the omitted value with respect to the contiguous ones.

The result of this elaboration is a calibration dataset that consists of 280 observed and 53 reconstructed values. In Figure 1(a) and 1(b) the complete reconstructed time series has been presented, together with the ‘duration plot’ of the data (sorted from the highest to the lowest).

The autocorrelation plot of the reconstructed series, Figure 1(c), shows that the function decreases as the lag increases. So, a periodicity in the data cannot be identified. In these cases, forecasting through a seasonal deterministic model does not seem plausible but the scenario suggests the use of a stochastic technique as the ARIMA model.

In order to complete the characterization of the time series, some common statistical tests have been carried out. In particular, the Ljung–Box (LB) and Box–Pierce (BP) tests were used to verify a possible autocorrelation, while Lee–White–Granger and Terasvirta–Lin–Granger tests were used to check linearity. The results (Table 2) show that the autocorrelation can be considered statistically significant in this case and that a linear process is present. Thus, it seems reasonable to use linear models like those of the ARIMA class.

Finally, the Augmented Dickey–Fuller (ADF) and Philips–Perron (PP) tests (Table 3), performed to verify the stationarity, show a tendency to reject the null hypothesis, i.e. the presence of unit roots and the non-stationarity of the process. Thus, the analysed series presents a stationary trend: the mean, variance and autocorrelation does not significantly change during the overall observation time.

Table 1 | Summary statistics of the measured data (not imputed) of the calibration dataset referred to the water levels observed in the reservoir of Cesine

<table>
<thead>
<tr>
<th>Sample size</th>
<th>Mean [m]</th>
<th>Std. dev. [m]</th>
<th>Median [m]</th>
<th>Min [m]</th>
<th>Max [m]</th>
<th>Skewness</th>
<th>Kurtosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>280</td>
<td>2.73</td>
<td>0.64</td>
<td>2.7</td>
<td>1.4</td>
<td>4</td>
<td>-0.16</td>
<td>-0.89</td>
</tr>
</tbody>
</table>
CALIBRATION OF THE MODEL

In order to better describe the trend, over time, of the water levels in the reservoir, three ARIMA models were performed. Coefficients were estimated on the first 333 calibration periods by means of the statistical program R and using likelihood maximization as the technique of parameter estimation.

Model ARIMA (2,0,2)

Because of the stationarity of the data, ARIMA model (2,0,2) does not include a differentiation process. The prediction of the water level in the tank in a given period \(t \), provided by the model, is described by Equation (7):

\[
\hat{Y}_t = \mu + \phi_1(Y_{t-1} - \mu) + \phi_2(Y_{t-2} - \mu) + \theta_1(e_{t-1}) + \theta_2(e_{t-2}) \quad (7)
\]

Table 4, instead, reports the estimated value of the coefficients of the model and their relative standard errors. The value of the intercept (about 2.7 m) can be considered the average value of the water level in the tank during the calibration period.

The graphical comparison between the observed data and ARIMA model (2,0,2) (Figure 2(a)) shows how the curve of the predicted data (dotted curve) follows very closely that of the observed ones (solid curve). The time horizon of the forecast is one day. Only the fastest fluctuations of the level are not well foreseen since the model needs, at least, one period of time (in this case one day) to settle down after a sharp change in the slope of the observed signal.

Model ARIMA (3,1,3)

Model ARIMA (3,1,3) contemplates an order one of differ-
entiation of the data. Moreover, both an autoregressive
and a moving average term were added. The level in the
reservoir, predicted by the model at a generic period \(t \), is
described by Equation (8):

\[
\hat{Y}_t = \mu \left(Y_{t-1} - Y_{t-2} \right) + \phi_1 \left(Y_{t-2} - Y_{t-3} \right) + \phi_2 \left(Y_{t-3} - Y_{t-4} \right) + \phi_3 \left(Y_{t-4} - Y_{t-5} \right) + \theta_1 \left(e_{t-1} \right) + \theta_2 \left(e_{t-2} \right) + \theta_3 \left(e_{t-3} \right)
\]

(8)

This model, like the previous one, has a forecasting time
horizon of one day.

Table 5 shows the estimated value of the coefficients of
the model and their relative standard errors.

Model ARIMA (6,1,6)

In order to provide a three-day forecasting horizon, model
ARIMA (6,1,6) was developed. In the phase of estimation
of parameters, the values of the first three autoregressive
parameters \(\phi_1, \phi_2, \phi_3 \) and the first three moving average
parameters \(\theta_1, \theta_2, \theta_3 \) were manually set to zero, perform-
ing the likelihood maximization with the new function. A
derivation of order one of the series was also carried out. The model forecasting formula is reported in
Equation (9):

\[
\hat{Y}_t = \mu \left(Y_{t-1} - Y_{t-2} \right) + \phi_4 \left(Y_{t-4} - Y_{t-5} \right) + \phi_5 \left(Y_{t-5} - Y_{t-6} \right) + \phi_6 \left(Y_{t-6} - Y_{t-7} \right) + \theta_4 \left(e_{t-4} \right) + \theta_5 \left(e_{t-5} \right) + \theta_6 \left(e_{t-6} \right)
\]

(9)

Table 6 shows the model coefficients with the relative
standard errors.

The graphical comparison, Figure 2(c), shows how the
curve of ARIMA model (6,1,6) (dot-dashed line) follows
quite precisely the one related to the observed data (black
line) but the extension of the forecasting horizon from one
to three day is paid with a loss of precision. Furthermore,
it is possible to observe the typical delay of the expected
signal with respect to the observed one. As can be expected
this model needs three periods to settle any rapid variations
in the series.

VALIDATION OF THE MODEL

In order to verify the forecasting abilities of the three pro-
posed models, a validation phase was carried out by using,
as already explained, the values of the daily water level regis-
tered in the tank of Cesine in the month of December 2014.

The summary statistics of the forecast error are reported
in Table 7.

Figure 3(a) shows the comparison between the level
value observed in December (continuous black line) and
the level predicted by ARIMA model (2,0,2) (dotted line).
In the first days, the model’s delay in anticipating the
sharp change in slope in the observed series is manifested.
Starting from period 337 the forecast manages to follow
very well the trend of the data which present very progress-
ive and not rapid variations in value.

Model (3,1,3), instead, averagely overestimates the data
observed throughout the validation period, as can be
noticed in Figure 3(b).

Figure 3(c) shows the comparison between the observed
water level and the forecast level provided by ARIMA model
(6,1,6). The forecast shows the typical delay, since the infor-
mation extracted to predict the series is that of the three
previous days.

RESULTS AND DISCUSSION

In order to quantitatively compare the proposed models, the
analysis of the forecast errors in the calibration phase
(residuals) and in the validation phase (errors) has been

Table 4	Estimated coefficients of the ARIMA (2,0,2) model and related standard errors				
Intercept, \(\mu \) [m]	AR1, \(\phi_1 \)	AR2, \(\phi_2 \)	MA1, \(\theta_1 \)	MA2, \(\theta_2 \)	
Estimated value	2.7314	1.8491	-0.8926	-0.4743	-0.1794
Standard error	0.0634	0.0389	0.0354	0.0697	0.0659
Figure 2 | Observed and forecast water levels of the reservoir of Cesine in the calibration time range. The black line is the observed series, and is compared with the forecasts of the following models: (a) ARIMA (2,0,2); (b) ARIMA (3,1,3); (c) ARIMA (6,1,6).
executed. ARIMA model (2,0,2) has both an average of residuals and a median equal to zero and the standard deviation is particularly low, too (Table 8). Model (3,1,3) confirms the tendency to overestimate the real value of the level showing a negative average and median of the residuals. The asymmetry and kurtosis indices suggest a normal distribution of the residuals for all the three proposed models. ARIMA model (2,0,2) has the lowest mean value of residuals as shown in Table 8. The residuals distribution of model (6,1,6) exhibits the highest standard deviation, even though the mean residual is very low. This worsening in the performances is balanced by the advantage of giving a broader forecasting horizon.

Residuals of ARIMA model (2,0,2) appear to be symmetrically and regularly distributed (Figure 4(a)). As regards the other two models there are slight asymmetries in the histograms, which appear of modest magnitude, also when evaluating the quantile–quantile diagrams of Figure 5.

Figure 5 shows the quantile–quantile diagrams (Q–Q plot) of the residuals for all the three proposed models. This graph compares the cumulative distribution of the observed variable with the cumulative distribution of a normal distribution. If the observed variable has a normal distribution, the points of this joint distribution gather on a diagonal directed from the bottom to the top and from left to right. In the Q–Q plots shown we can see that all three models provide normally distributed forecast errors, i.e. they do not differ significantly from this desired distribution.

Thus, in general the proposed ARIMA models guarantee a forecast error apparently due only to random fluctuations well described by a normal distribution.

As for the autocorrelation of the residuals (Figure 6), models (2,0,2) and (3,1,3) present a very low autocorrelation. Model (6,1,6), instead, seems not to have been able to exploit all the autocorrelation of the series. This result was predictable due to the fact that the lowest lag data (1, 2 and 3) could not be used in order to extend the forecast horizon to the next three days.

In Table 9, the summary statistics of the errors calculated in the validation phase are reported. As expected, the error distributions tend to get worse with respect to the calibration phase. Anyway, the mean errors and the standard deviations still give good results.

Finally, in Table 10 the values of the average percentage error (MPE), of the error variation coefficient (CVE) and of the MASE are reported, in both the phases. Model (2,0,2) presents the lower average error (MPE) and the lower error variation coefficient (CVE), both in calibration and
Figure 3 | Water levels (observed and forecast) of the Cesine reservoir during the validation period (December 2014). The solid line is the actual series, the dotted line is the forecast of the ARIMA (2,0,2) model (a), the dashed line is the forecast of the ARIMA (3,1,3) model (b), the dot-dashed line is the ARIMA (6,1,6) model (c).
in validation, compared with the other models. This result confirms that for this time series, it does not seem useful to carry out the differentiation of order one and therefore the preferable model among those proposed to obtain a forecast with a time horizon of one day is ARIMA (2,0,2). Model (6,1,6) shows a worsening of the values of the error metrics offset, basically due to the extension of the forecast horizon.

CONCLUSIONS

In this paper the problem of modelling the time series of water levels in a reservoir connected to the supply system of a city has been discussed. In particular, a methodology to model and forecast the daily levels was applied.

The univariate time series is related to the daily measurements of the water levels, observed during the year 2014, in the reservoir of the Cesine area connected to the network for the drinking water use of the city of Avellino (Italy). Some measurements, corresponding to public holidays, were missing and, so, were reconstructed imputing the average value of the two temporally closest measurements, one previous and one following the missing period. In this way a complete time series of 364 periods was obtained.

Once the time series was statistically characterized, a stochastic modelling of the ARIMA class was proposed. The statistical analysis showed that the series of levels does not present evident periodicity or seasonality, which could be used for the construction of a deterministic or seasonal model. Furthermore, the series was linear and stationary. Then, the dataset was divided into two subgroups: 333 calibration periods, for the estimation of the coefficients of the proposed models, and 31 validation periods, corresponding to the measurements of the levels in December 2014.

Table 8 Summary statistics of the residuals (calibration phase)

<table>
<thead>
<tr>
<th>ARIMA model</th>
<th>Mean [m]</th>
<th>Std dev. [m]</th>
<th>Median [m]</th>
<th>Min [m]</th>
<th>Max [m]</th>
<th>Skewness</th>
<th>Kurtosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2,0,2)</td>
<td>0.00</td>
<td>0.15</td>
<td>0.00</td>
<td>-0.52</td>
<td>0.52</td>
<td>-0.22</td>
<td>2.18</td>
</tr>
<tr>
<td>(3,1,3)</td>
<td>-0.12</td>
<td>0.15</td>
<td>-0.12</td>
<td>-0.63</td>
<td>0.38</td>
<td>-0.15</td>
<td>2.05</td>
</tr>
<tr>
<td>(6,1,6)</td>
<td>-0.01</td>
<td>0.57</td>
<td>0.02</td>
<td>-2.40</td>
<td>1.56</td>
<td>-0.44</td>
<td>1.30</td>
</tr>
</tbody>
</table>

Figure 4 | Histograms of the residuals during the calibration phase: (a) residuals of ARIMA (2,0,2); (b) residuals of ARIMA (3,1,3); (c) residuals of ARIMA (6,1,6).
The results of the modelling were very encouraging both from comparing, graphically, the observed level with the expected one, and by analysing the distribution of the forecast error from a quantitative point of view. The best forecast results, both in the calibration phase, i.e. during parameter estimation, and in the validation phase, were obtained with an ARIMA model (2,0,2). A model with differentiation of the first-order series, ARIMA (3,1,3), was also tested, however it did not provide clear improvements in the forecast. Both of these models are characterized by a

![Figure 5](https://iwaponline.com/ws/article-pdf/doi/10.2166/ws.2019.190/648211/ws2019190.pdf)

Figure 5 Q-Q plots of the residuals during the calibration phase: (a) residuals of ARIMA (2,0,2); (b) residuals of ARIMA (3,1,3); (c) residuals of ARIMA (6,1,6).

![Figure 6](https://iwaponline.com/ws/article-pdf/doi/10.2166/ws.2019.190/648211/ws2019190.pdf)

Figure 6 Autocorrelation plots of the residuals during the calibration phase: (a) residuals of ARIMA (2,0,2); (b) residuals of ARIMA (3,1,3); (c) residuals of ARIMA (6,1,6).
one-day forecasting horizon. To obtain a longer time horizon, an ARIMA model (6,1,6) was implemented. It provided slightly worse forecasts but with a three-day forecast horizon. Therefore, a possible and novel approach could be to implement two models in parallel: the ARIMA (6,1,6) model could be used for ‘medium term’ (three days ahead) rough predictions, combined with the ARIMA (2,0,2) model, used to provide short-term (one step ahead, daily) forecasts. The use of these techniques on water data showed excellent potential, presenting a possible way for integration between the current water service monitoring systems and the forecasts obtained with this methodology. The contribution of this paper is to extend the studies on systems and the forecasts obtained with this methodology.

Further studies will include a similar approach to the flow rate, in order to explore the potentiality of these techniques for a different dataset. In addition, in other time series in which the hourly data are available, different time bases can be considered, so that seasonal patterns can arise and can be implemented in the models.

Table 9 | Summary statistics of the errors (validation phase)

<table>
<thead>
<tr>
<th>ARIMA model</th>
<th>Mean [m]</th>
<th>Std dev. [m]</th>
<th>Median [m]</th>
<th>Min [m]</th>
<th>Max [m]</th>
<th>Skewness</th>
<th>Kurtosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2,0,2)</td>
<td>0.02</td>
<td>0.20</td>
<td>0.04</td>
<td>−0.92</td>
<td>0.44</td>
<td>−2.75</td>
<td>11.89</td>
</tr>
<tr>
<td>(3,1,3)</td>
<td>−0.10</td>
<td>0.20</td>
<td>−0.09</td>
<td>−1.03</td>
<td>0.27</td>
<td>−2.84</td>
<td>12.04</td>
</tr>
<tr>
<td>(6,1,6)</td>
<td>0.11</td>
<td>0.46</td>
<td>0.05</td>
<td>−0.56</td>
<td>1.36</td>
<td>0.65</td>
<td>−0.14</td>
</tr>
</tbody>
</table>

Table 10 | Value of the error metrics computed for the three proposed models during the two phases of the modelling process

<table>
<thead>
<tr>
<th>Phase</th>
<th>ARIMA model</th>
<th>MPE</th>
<th>CVE</th>
<th>MASE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calibration</td>
<td>(2,0,2)</td>
<td>−0.306</td>
<td>0.055</td>
<td>0.764</td>
</tr>
<tr>
<td>Calibration</td>
<td>(3,1,3)</td>
<td>−4.959</td>
<td>0.070</td>
<td>1.123</td>
</tr>
<tr>
<td>Calibration</td>
<td>(6,1,6)</td>
<td>−1.781</td>
<td>0.209</td>
<td>3.145</td>
</tr>
<tr>
<td>Validation</td>
<td>(2,0,2)</td>
<td>0.278</td>
<td>0.070</td>
<td>0.858</td>
</tr>
<tr>
<td>Validation</td>
<td>(3,1,3)</td>
<td>−4.035</td>
<td>0.077</td>
<td>1.105</td>
</tr>
<tr>
<td>Validation</td>
<td>(6,1,6)</td>
<td>4.471</td>
<td>0.161</td>
<td>2.922</td>
</tr>
</tbody>
</table>

REFERENCES

Guarnaccia, C., Mastorakis, N. E., Quartieri, J., Tepedino, C. & Kaminaris, S. D. 2017 Development of seasonal ARIMA models for traffic noise forecasting. MATEC Web of Conferences, 125, 05013 (21st International Conference on Circuits, Systems, Communications and Computers (CSCC 2017)).

