Removal efficiencies and kinetic rate constants of xenobiotics by ozonation in tertiary treatment

Baptiste Mathon, Marina Coquery, Cécile Miege, Ywann Penru and Jean-Marc Choubert

ABSTRACT

This study gives a full overview of the chemical oxidation by ozone of selected xenobiotics usually present in effluents of conventional wastewater treatment plants. A qualitative and quantitative overview of literature data was made, and describes the ozonation efficiency and processes for the elimination of 12 xenobiotics (pesticides and pharmaceuticals). A database was built, compiling literature results of experimental ozonation assays in laboratory and real-scale conditions. Special attention was paid to selecting the data and compiling reliable results on removal efficiencies and kinetic parameters. An original study was performed in a semi-batch reactor applying ozone on secondary effluent spiked beforehand with a cocktail of 12 xenobiotics. The results of this study were compared with the literature data to evaluate the influence of the kinetic competition of xenobiotics in spiked wastewater in the determination of kinetic rate constants. These 12 xenobiotics were classified into three groups (high-/medium-/low-oxidizable) according to the ranges of their direct kinetic rate constants (k_{O3}). A best effective ozone dose between 0.2 and 0.4 gO3 gDOC$^{-1}$ is proposed for the elimination of xenobiotics. The predominant elimination pathway between direct and indirect oxidation was identified for each xenobiotic.

Key words | direct and indirect ozonation, micropollutants, pesticides, pharmaceuticals, wastewater

INTRODUCTION

Conventional wastewater treatment plants (WWTPs) partially eliminate xenobiotics present in domestic and industrial discharges (Choubert et al. 2011; Verlicchi et al. 2012). However, several xenobiotics are still present in the effluents of WWTPs at concentrations close to 0.1 μg L$^{-1}$ for some pesticides (e.g. diuron) and pharmaceuticals (e.g. carbamazepine, sotalol and diclofenac), and even more than 1 μg L$^{-1}$ for other xenobiotics, including aminomethylphosphonic acid, ibuprofen and gemfibrozil (Heberer 2002; Martin Ruel et al. 2011). The potential hazard of these xenobiotics calls for polishing treatment technologies that will remove xenobiotics and anticipate any future regulatory changes. One elimination pathway of proven effectiveness for the degradation of xenobiotics in drinking water is the use of one or more oxidants, such as UV radiation, ozone or hydrogen peroxide (Meunier et al. 2006; Martin Ruel et al. 2011).

This study focuses on the role of oxidation by ozone in the elimination of xenobiotics in polishing treatment. Ozone is a specific, efficient oxidant for the purification of drinking waters and some industrial wastewaters (Huber et al., 2005; Snyder et al. 2006). For domestic secondary effluents, recent studies carried out in pilot or full-scale plants showed that chemical oxidation by ozone [0.25–0.5 gO3/g dissolved organic carbon (DOC)] promoted the elimination of most of the pharmaceuticals studied (Hollender et al. 2009; Wert et al. 2009). Besnault et al. (2012) reported removal efficiencies higher than 90% for 24 out of 40 organic xenobiotics quantified in secondary effluents.

Each xenobiotic can be characterized by two second-order rate constants, one for exposure of the xenobiotic to ozone (k_{O3}) and the other for its exposure to free hydroxyl (OH) radicals (k_{OH}), also called direct and indirect oxidation pathways. The literature provides information on the direct and indirect oxidation of xenobiotics commonly...
found in secondary effluents, for example, values for the herbicide diuron \((k_{\text{O}_3} = 16.4 \, \text{M}^{-1} \, \text{s}^{-1}; \text{Benitez et al.} \, 2007) \) and for some pharmaceuticals: carbamazepine \((k_{\text{O}_3} = 3.0 \times 10^5 \, \text{M}^{-1} \, \text{s}^{-1}; \text{Gerrity et al.} \, 2012) \) and atenolol \((k_{\text{O}_3} = 1.7 \times 10^5 \, \text{M}^{-1} \, \text{s}^{-1}; \text{Hollender et al.} \, 2009) \). However, predicting the elimination of a xenobiotic from these kinetic rate constants is difficult. Better knowledge of removal rates under various operating conditions could help stakeholders design polishing treatment processes using ozone.

We set out to make a thorough overview of the removal and kinetic degradation by ozonation of 12 pharmaceuticals and pesticides known to be refractory to conventional WWTPs. This overview aimed to improve our understanding of the behavior of xenobiotics in a tertiary treatment process using ozonation. Direct ozone oxidation and indirect free hydroxyl radical oxidation kinetic parameters were closely examined. Bibliographic data for xenobiotic removal efficiency obtained in wastewater were also reviewed. All this information was compiled in a database. We then set up an original study aiming at evaluating both removal efficiencies and kinetic constants for a cocktail of micropollutants in wastewaters. Finally, literature data and initial experimental data were compared to ensure the reliability of our method, and evaluate the influence of kinetic competition in the determination of kinetic rate constants.

MATERIALS AND METHODS

Selection of the xenobiotics studied

We focused on several xenobiotics known to be poorly biodegraded and poorly adsorbed. These xenobiotics can be considered as refractory to secondary treatment, and are frequently quantified in effluents of WWTPs (Ternes et al. 2004; Gabet-Giraud et al. 2010; Martin Ruel et al. 2010; Falás et al. 2012). A set of 12 substances were selected: erythromycin and clarithromycin (antibiotics), carbamazepine (antiepileptic), diazepam (benzodiazepine), diclofenac (anti-inflammatory drug), metoprolol, propranolol, atenolol and sotalol (betablockers), simazine, diuron and isoproturon (pesticides). They cover a broad range of physical and chemical properties (molecular weight, solubility, pKa, log Kow), and are characterized by various functional groups and chemical bonds (Table 1). Robust accurate analytical methods were also available for all the xenobiotics selected (Gabet-Giraud et al. 2010).

Bibliographic study and compilation of information in a database

To estimate the efficiency of ozonation processes for the 12 xenobiotics studied, we selected scientific papers using the Scopus and Web of Science search engines, for the period 1991–2014. The keywords used were ‘ozone’ or ‘ozonation’, plus the names of the selected xenobiotics. A database was built in an MS Excel® spreadsheet to collect (i) descriptors of xenobiotic ozonation: xenobiotic removal efficiency, or/and direct kinetic rate constant \((k_{\text{O}_3}) \) and indirect kinetic rate constant \((k_{\text{OH}}) \), (ii) when reported, metadata on the experimental conditions such as information on xenobiotics (name, chemical structure, initial concentration, etc.), initial physical and chemical composition of the water (nitrate and nitrite concentrations, total organic carbon (TOC), DOC, etc.), ozone conditions (ozone dose, contact time, etc.), other experimental conditions (nature of exposure container, volume of reactor, etc.) and the analytical methods (method name, limit of quantification, etc.), and (iii) detected by-products when reported (see supplementary materials SPM1, available with the online version of this paper). The selection focused on studies that estimated xenobiotic removal efficiencies with treated wastewater; kinetic rate constants in wastewater are not reported in the literature, so the data measured in pure water were compiled.

Experimental study

Experimental strategy

The experimental study was designed to determine direct \((k_{\text{O}_3}) \) and indirect \((k_{\text{OH}}) \) rate constants as defined in Equation (1):

\[
-\ln \left(\frac{[\text{MP}]}{[\text{MP}]_0} \right) = k_{\text{O}_3} \cdot \int [\text{O}_3] \, dt + k_{\text{OH}} \int [\cdot \text{OH}] \, dt,
\]

where [MP] is the concentration of xenobiotics in the aqueous (dissolved) phase (mg L\(^{-1}\)) during the study, [MP]\(_0\) is the initial concentration, \(k_{\text{O}_3} \) is the kinetic rate constant of the reaction between the xenobiotic and ozone (M\(^{-1}\) s\(^{-1}\)), \(k_{\text{OH}} \) is the kinetic rate constant of the reaction between the xenobiotic and OH radicals (M\(^{-1}\) s\(^{-1}\)), and \(\int [\text{O}_3] \, dt \) and \(\int [\cdot \text{OH}] \, dt \) are the ozone and OH radical exposures.

Two batch experiments were conducted. In a first experiment we determined the direct kinetic rate constants \((k_{\text{O}_3}) \) for the reactions between ozone and a cocktail of the 12 xenobiotics studied. It was performed at 17°C in the presence of tert-butanol (0.1 M) as OH radical scavenger (Staehelin & Hoigne 1985). In a second experiment we
determined the indirect kinetic rate constants ($k_{\cdot OH}$) for the reactions between OH radicals and a cocktail of the 12 xenobiotics studied. It was performed at 17 °C in the presence of 4-chlorobenzoic acid (p-CBA).

Table 1 | Physical and chemical properties of the 12 xenobiotics studied and concentrations in secondary effluents

<table>
<thead>
<tr>
<th>Substance (family)</th>
<th>Semi-developed formula</th>
<th>Chemical formula</th>
<th>Molecular weight (g mol$^{-1}$)</th>
<th>Solubility in water at 25 °C (mg L$^{-1}$)</th>
<th>pKα</th>
<th>Log K_{ow}</th>
<th>Concentrations measured in secondary effluents (μgL$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atenolol (Betablocker)</td>
<td>C${14}$H${22}$N$_2$O$_3$</td>
<td>266</td>
<td>1.3 × 104</td>
<td>9.6</td>
<td>0.16</td>
<td>0.01–7a</td>
<td></td>
</tr>
<tr>
<td>Carbamazepine (Antiepileptic)</td>
<td>C${15}$H${12}$N$_2$O</td>
<td>236</td>
<td>17.7</td>
<td>NIA</td>
<td>2.45</td>
<td>0.001–11a</td>
<td></td>
</tr>
<tr>
<td>Clarithromycin (Antibiotic)</td>
<td>C${38}$H${69}$NO$_{13}$</td>
<td>748</td>
<td>0.33</td>
<td>8.9</td>
<td>3.16</td>
<td>0.1–8a</td>
<td></td>
</tr>
<tr>
<td>Diazepam (Antidepressant)</td>
<td>C${16}$H${13}$ClN$_2$O</td>
<td>285</td>
<td>50</td>
<td>3.4</td>
<td>2.82</td>
<td>0.02–11a</td>
<td></td>
</tr>
<tr>
<td>Diclofenac (Nonsteroidal anti-inflammatory agent)</td>
<td>C${14}$H${11}$Cl$_2$NO$_2$</td>
<td>296</td>
<td>2.37</td>
<td>4.2</td>
<td>4.51</td>
<td>0.01–10a</td>
<td></td>
</tr>
<tr>
<td>Diuron (Pesticide)</td>
<td>C${6}$H${10}$Cl$_2$N$_2$O</td>
<td>233</td>
<td>49</td>
<td>13.6</td>
<td>2.68</td>
<td>0.01–0.2b</td>
<td></td>
</tr>
<tr>
<td>Erythromycin (Antibiotic)</td>
<td>C${37}$H${67}$NO$_{13}$</td>
<td>734</td>
<td>2.0 × 103</td>
<td>8.9</td>
<td>3.06</td>
<td>0.01–8a</td>
<td></td>
</tr>
<tr>
<td>Isoproturon (Pesticide)</td>
<td>C${12}$H${16}$N$_2$O</td>
<td>206</td>
<td>70</td>
<td>NIA</td>
<td>2.87</td>
<td>0.01–0.1b</td>
<td></td>
</tr>
<tr>
<td>Metoprolol (Betablocker)</td>
<td>C${15}$H${25}$NO$_3$</td>
<td>267</td>
<td>1.7 × 104</td>
<td>NIA</td>
<td>1.88</td>
<td>0.005–3a</td>
<td></td>
</tr>
<tr>
<td>Propranolol (Betablocker)</td>
<td>C${16}$H${21}$NO$_2$</td>
<td>259</td>
<td>61.7</td>
<td>9.4</td>
<td>3.48</td>
<td>0.01–0.8a</td>
<td></td>
</tr>
<tr>
<td>Simazine (Pesticide)</td>
<td>C${7}$H${12}$ClN$_5$</td>
<td>202</td>
<td>6.2</td>
<td>1.6</td>
<td>2.18</td>
<td>0.01–0.05b</td>
<td></td>
</tr>
<tr>
<td>Sotalol (Betablocker)</td>
<td>C${12}$H${20}$N$_2$O$_3$S</td>
<td>272</td>
<td>5.5 × 103</td>
<td>NIA</td>
<td>0.24</td>
<td>0.2–4a</td>
<td></td>
</tr>
</tbody>
</table>

NA – no information available.
aAccording to the data available in Verlicchi et al. (2012).
bAccording to the data available in Martin Ruel et al. (2010).

No method yet exists for the direct measurement of OH radical concentrations. The approach proposed by Elovitz & von Gunten (1999) to measure the transient OH radical from the O$_3$ concentrations during ozonation experiments was...
used. This method consists in measuring the decay of an ozone-resistant reference compound (p-CBA) that reacts rapidly with OH radicals (rate constant of reaction with OH radicals 5×10^9 M$^{-1}$ s$^{-1}$; Buxton et al. 1988), and has a very low reactivity toward ozone (rate constant of reaction with ozone 0.15 M$^{-1}$ s$^{-1}$; Yao & Haag 1991).

For experiments 1 and 2, the effluent discharged by the Bouillides WWTP (GPS coordinates: 43°37’5.892” N; 4°34’44.47” E, France) was used. It used primary settling and two stages of submerged aerated filters for carbon and nitrogen removal (Penru et al. 2015). The specific ultraviolet absorbance at 254 nm (SUVA$_{254}$) of the effluent was 2.4 L m$^{-3}$ mgC$^{-1}$. TOC content was 8.25 mg L$^{-1}$, nitrite concentration was 0.08 mg L$^{-1}$ in NO$_2$$_3$, and alkalinity was 290 mg L$^{-1}$ in HCO$_3$. The ratio R_{CT}, defined as the ratio of $\int [\text{OH}] dt$ to $\int [\text{O}_3] dt$ (Equation (2); Elovitz & von Gunten 1999), was determined experimentally from the decrease in the concentrations of the reference compound (p-CBA) and ozone, to 5.2×10^{-6}. The dissolved ozone concentration was monitored with an Orbisphere model 410 measurement probe (Hach Lange).

$$R_{CT} = \frac{\int [\text{OH}] dt}{\int [\text{O}_3] dt}. \quad (2)$$

In both experiments, one glass container was filled with 30 L of secondary effluent from the Bouillides WWTP. The effluent was thoroughly mixed mechanically. Ozone gas was dispensed with ceramic porous diffusers set at the bottom of the container. The effluent was spiked with an aqueous solution containing a mixture of the 12 xenobiotics, to reach a final concentration of 1μg L$^{-1}$ (no organic solvent was used during this spiking step). Ozone was produced by an ozone generator (Mimaud Equipements, 60 L h$^{-1}$) applying a specific ozone dose of 1.6 g O$_3$ g DOC$^{-1}$ in 15 minutes. Sampling was performed at 0, 3, 6, 10 and 15 minutes. The water samples were rapidly filtered at 0.7 μm (glass fiber filters) before analysis.

Target chemical analyses

The parent compounds (12 xenobiotics) were assayed by liquid chromatography coupled with API 4000 – AB Sciex tandem mass spectrometry (LC–MS/MS). The separation was performed on an ACQUITY UPLC HSS-T3 column (C18, 100 x 2.1 mm, 1.7 μm) after direct injection of an aliquot of 50μL of each sample at a flow rate of 0.3 mL min$^{-1}$. The raw data were acquired and processed quantitatively for parent compounds using TargetLynx for MassLynx 4.1 software (Waters Corp., Milford, USA). This validated analytical technique gives robust xenobiotic concentrations, obtained with low limits of quantification (0.1–0.4 ng L$^{-1}$).

Calculation of constants k_{O_3} and $k_{\cdot OH}$

For all the xenobiotics studied, the direct kinetic rate constant with ozone (k_{O_3}) was determined using Equation (1) combined with the initial concentrations of micropollutants (MP$_0$), the concentrations after sampling at $t = 5$ min (MP) and the dissolved ozone concentration. When the concentrations of xenobiotics were below the limit of quantification after sampling at $t = 5$ min, a minimal estimate of k_{O_3} was made. We then calculated the indirect kinetic rate constant with OH radicals ($k_{\cdot OH}$) for all the xenobiotics studied using the direct kinetic rate constant (k_{O_3}) and R_{CT} (see Equation (2)).

RESULTS AND DISCUSSION

General information from the bibliographic database

A total of 33 relevant scientific papers were published between 1991 and 2014 (see full references in supplementary materials SPM1). We compiled 416 data lines in the database, 61 on pesticides and 355 on pharmaceuticals. All these data, including the metadata on the experimental conditions applied, are fully presented in supplementary materials SPM2 (available with the online version of this paper). The database comprises 582 removal efficiency values obtained under various conditions, 23 direct kinetic rate constants (k_{O_3}) and 15 indirect kinetic rate constants for reaction with OH radicals ($k_{\cdot OH}$).

The percentage of data according to the nature of the xenobiotics is given in Figure 1. Most data concern removal efficiency on pharmaceuticals (83%), and much less data are available on pesticides. Of the data, 87% was for removal efficiencies measured in various types of wastewaters (sewage from hospitals, secondary treated effluent, reverse osmosis concentrate, etc.). The removal efficiencies were mostly measured in pilot scale plants, and at concentrations usually recorded in the environment (ng L$^{-1}$ or μg L$^{-1}$ range). The other 13% of the data was for kinetic rate constants measured in pure water spiked with xenobiotics at a higher concentration range (~mg L$^{-1}$). For most of the xenobiotics, only one set of kinetic constants is available.

Information on the physical and chemical composition of the water used for the experiments was often lacking in the literature. The following parameters were only partially specified in some experiments: DOC (only 30% of the 416 data lines), nitrates (24%), alkalinity (21%), ammonium (21%) and TOC (21%).

When they were available, we also listed the by-products detected by the different studies (the full list is given in...
supplementary materials SPM3, available with the online version of this paper). Only six scientific papers reported the formation of by-products, along with removal efficiencies for parent compounds in the context of treated wastewater. In all, 67 by-products were listed for four xenobiotics (33 for atenolol, 11 for metoprolol, 10 for propranolol and 13 for carbamazepine). No information was reported for the other eight xenobiotics.

The formation and degradation of by-products can be usefully studied to find optimized operating conditions for the ozonation process (duration and ozone dose). It would be of interest to identify the by-products predominantly formed by the direct or indirect pathways, and adapt operating conditions accordingly. However, literature data are scant. Efforts are needed to investigate by-products, and assess their elimination during processing and their ecotoxicological impact.

Bibliographic information on the influence of ozone dose on removal efficiency

The database provided information on the range of effective ozone dose to apply to reach a high removal efficiency (>70%) for the 12 xenobiotics studied. Figure 2 presents the example of five micropollutants, from which it could be deduced that the mean effective dose of ozone to obtain removal efficiency above 70% was at least 0.2 gO₃ gDOC⁻¹. However, data variability was marked, as shown for instance for carbamazepine, with removal efficiency ranging between 40% and 100% for ozone doses between 0.2 and 0.3 gO₃ gDOC⁻¹. The variability of ozonation efficiency (i.e. removal efficiency) is due to the varied nature of the water and experimental conditions (type of effluent, nitrite concentration, HCO₃⁻ concentration, contact time, etc.). Also, higher mean removal efficiencies were reached with higher ozone doses (e.g. 85% with 0.4 gO₃ gDOC⁻¹, 90% with 0.6 gO₃ gDOC⁻¹), but the data were also scattered around the mean values (±15%). The varied nature of the water and experimental conditions hinder any robust statistical comparison of removal efficiencies between xenobiotics; hence the utility of performing studies with several xenobiotics (e.g. by spiking) to compare their behavior in similar conditions.

As shown in Figure 2, information was obtainable for four other xenobiotics: clarithromycin, diclofenac, atenolol and metoprolol, with data for more than 10 removal efficiencies...
available. We deduced that the mean effective dose of ozone to obtain a removal efficiency above 70% was at least 0.2 gO$_3$ gDOC$^{-1}$ for clarithromycin and diclofenac and 0.4 gO$_3$ gDOC$^{-1}$ for atenolol and metoprolol. However, for the other xenobiotics, there was insufficient information ($n < 10$) to conclude on the best operating conditions. For diazepam, only three datapoints were available, and a mean removal efficiency of 70% was obtained for an ozone dose of 0.9 gO$_3$ gDOC$^{-1}$. For diuron, isoproturon and erythromycin, a mean removal efficiency of about 70% was achieved.
with an ozone dose of 0.6 gO₃ gDOC⁻¹, but only six, three and seven datapoints, respectively, were available. For propranolol and sotalol, an ozone dose of 0.3 gO₃ gDOC⁻¹ led to a mean removal efficiency of 70%, but only nine datapoints were available. No data were found for simazine.

Comparison of kinetic rate constants for the 12 xenobiotics – experimental vs. bibliographic studies

The direct and indirect kinetic rate constants for 12 xenobiotics were determined experimentally (Table 2). Unlike those reported elsewhere, the values of these constants were determined in treated wastewater and in identical experimental conditions. These values were compared with those in the literature. No data were found from studies combining determination of removal efficiency and kinetic rate constant in wastewater.

To compare the efficiency of ozonation for each xenobiotic, we split the xenobiots into three groups, according to the range of the direct kinetic rate constants ($k_{O₃}$) found in the literature:

- ‘low-oxidizable’ ($10^{0} < k_{O₃} < 10^{2}$ M⁻¹ s⁻¹) for diazepam, simazine and diuron (Beltrán et al. 2000; Huber et al. 2003; Benitez et al. 2007);
- ‘medium-oxidizable’ ($10^{2} < k_{O₃} < 10^{4}$ M⁻¹ s⁻¹) for atenolol, metoprolol and isoproturon (Benitez et al. 2007; Benner et al. 2008);
- ‘high-oxidizable’ ($k_{O₃} > 10^{4}$ M⁻¹ s⁻¹) for sotalol, clari-thromycin, erythromycin, propranolol, carbamazepine and diclofenac (Huber et al. 2003; Benner et al. 2008; Lee et al. 2014).

These studies confirmed that atenolol, metoprolol and isoproturon belonged to the group with intermediate oxidizability (medium-oxidizable), and diazepam, simazine and diuron to the one with low oxidizability (low-oxidizable). However, it was impossible to accurately determine a kinetic rate constant for xenobiotics classified as ‘high-oxidizable’ (i.e. clarithromycin, erythromycin, propranolol, sotalol, carbamazepine and diclofenac) because the concentrations of these xenobiots were below the limit of quantification after sampling at $t = 3$ min. We accordingly made a minimal estimate for which the micropollutant had a removal efficiency of 100% with an exposure time of 3 minutes. A value of $k_{O₃}$ higher than 10^{4} M⁻¹ s⁻¹ was recorded.

For the ‘medium-oxidizable’ group (atenolol, metoprolol and isoproturon), kinetic rate constants with OH radicals ($k_{H•O}$) were in the same range (1.2 to 2.8 times the value) as the literature values (between 7.5×10^{9} and 8×10^{10} M⁻¹ s⁻¹; Benner et al. 2008). For the ‘low-oxidizable’ group...
(diazepam, simazine and diuron), k_{OH} values were very close to the literature values (1.1 to 1.2 times the value), which were between 2.0×10^9 and 7.2×10^9 M$^{-1}$ s$^{-1}$ (Beltrán et al. 2000; Huber et al. 2003). Here, again, it was impossible to determine a specific rate constant for xenobiotics classified as ‘high-oxidizable’ (clarithromycin, erythromycin, propranolol, sotalol, carbamazepine and diclofenac). We recorded these k_{OH} values as higher than 10^9 M$^{-1}$ s$^{-1}$.

The experimental data showed marked differences in the kinetic rate constants (k_{O3}) of these 12 xenobiotics (from 7.8 up to 10^4 M$^{-1}$ s$^{-1}$), whereas the kinetic rate constants with OH radicals lay within one order of magnitude for xenobiotics in both the ‘low’ and ‘medium-oxidizable’ groups (from 2.7×10^9 to 1.8×10^{10} M$^{-1}$ s$^{-1}$).

Unlike the literature, where most studies were conducted on a single xenobiotic, our experimental data give deeper insight into the oxidation of a mixture of micropollutants. The comparison of the direct kinetic rate constants between xenobiotics is thus more robust, as they were determined under the same experimental conditions. These experimental values were very close to those of the literature within the same range, except for diazepam. This demonstrates that phenomena of kinetic competition between xenobiotics were insignificant.

From these kinetic rate constants and R_{CT}, we were able to estimate the contribution of the elimination of xenobiotics by the direct and indirect pathways with Equations (3) and (4) (Rosal et al. 2010).

$$f_{OH} = \frac{k_{OH}R_{CT}}{k_{OH}R_{CT} + k_{O3}},$$
(3)

$$f_{O3} = 1 - f_{OH}.$$
(4)

The elimination of xenobiotics in the ‘medium-oxidizable’ and ‘low-oxidizable’ groups should be mainly driven by indirect ozonation, with f_{O3} equal to 26% for metoprolol, 11% for isoproturon, 6% for atenolol and 1% for diazepam, simazine and diuron. By contrast, for molecules of the ‘high-oxidizable’ group, the direct ozone oxidation should predominate over indirect free hydroxyl radical oxidation. For the ‘high-oxidizable’ group, we could not determine exact k_{OH} and k_{O3} values for the six studied xenobiotics, so the data from the literature were used. The values of f_{O3} were: 71% for clarithromycin, 81% for erythromycin, 76% for propranolol, 80% for sotalol, 91% for carbamazepine and 98% for diclofenac. For the ‘high-oxidizable’ group, the direct ozone oxidation should predominate over indirect free hydroxyl radical oxidation.

Relation between xenobiotic removal efficiency and direct kinetic rate constants – experimental vs. bibliographic studies

Studying ozonation using only removal efficiencies is strongly influenced by the composition of the aqueous matrix, which contains various sinks for ozone and OH radicals (e.g. bromide, nitrite, and organic matter), and also by the chemical structure of the xenobiotics. Hence, a complementary approach based on chemical kinetics, independent of the composition of the aqueous matrix, is required to determine whether the differences observed for k_{O3} can explain the variations in removal efficiencies.

To give a full overview of the role of k_{O3} in determining the proneness of a xenobiotic to ozonation by water, we sorted literature data according to the applied ozone dose, and compared results with the experimental results of this study. The mean removal efficiencies for xenobiotics and the k_{O3} values are plotted in Figure 3(a) for the bibliographic data (applied ozone doses between 0.2 and 0.4 gO$_3$ gDOC$^{-1}$), and in Figure 3(b) for the data obtained in this study (ozone dose: 0.2 gO$_3$ gDOC$^{-1}$). The experimental values of k_{O3} for the three groups of xenobiotics previously defined were consistent with removal efficiencies obtained simultaneously for these xenobiotics (Figure 3(b)). For low-oxidizable xenobiotics ($k_{O3} < 10^3$ M$^{-1}$ s$^{-1}$) such as diazepam, simazine and diuron, the removal efficiency was low (<50%), whereas medium-oxidizable xenobiotics such as atenolol, metoprolol, and isoproturon had removal efficiencies between 50% and 90%, and high-oxidizable xenobiotics such as clarithromycin, erythromycin, propranolol, sotalol, carbamazepine and diclofenac ($k_{O3} > 10^4$ M$^{-1}$ s$^{-1}$) had removal efficiencies of >99%. Similar observations were made with literature data (Figure 3(a)), but this comparison using literature data was possible for only 9 of the 12 xenobiotics studied, because removal efficiencies were not found for diazepam, simazine and erythromycin at this ozone dose in batch conditions and with secondary treatment effluent. We report new information on removal efficiencies at this ozone dose for diazepam, simazine and erythromycin.

CONCLUSIONS

This study classifies 12 xenobiotics into high-oxidizable, medium-oxidizable and low-oxidizable categories. The effective dose of ozone needed to obtain a removal efficiency above 70% was found to be at least 0.2 gO$_3$ gDOC$^{-1}$ for
clarithromycin and diclofenac, 0.4 gO₃ gDOC⁻¹ for atenolol, metoprolol, propranolol and sotalol, and 0.6 gO₃ gDOC⁻¹ for diuron, isoproturon and erythromycin. The study also shows that the direct oxidation mechanism predominates for high-oxidizable xenobiotics, while the indirect oxidation mechanism predominates for medium-oxidizable and low-oxidizable xenobiotics. Future work will address the determination of oxidation rate constants for a broader range of xenobiotics, and the identification of generated by-products. It will also aim to develop a numerical model to optimize ozonation.

ACKNOWLEDGEMENTS

The authors thank the Rhone-Mediterranean Corsica Water Agency for financial support of the MICROPOLIS-PROCEDES project. We are also grateful to C. Crétoiller, A. Daval, P. Bados, C. Pelletier, J. Aubert, M. Masson, C. Brosse, S. Peltan, M. Arhror and L. Richard of Irstea for assistance with sampling and analysis.

REFERENCES

First received 15 November 2016; accepted in revised form 13 February 2017. Available online 1 March 2017.