The adsorption and Fenton behavior of iron rich Terra Rosa soil for removal of aqueous anthraquinone dye solutions: kinetic and thermodynamic studies

Doga Aktas, Nadir Dizge, H. Cengiz Yatmaz, Yasemin Caliskan, Yasin Ozay and Ayten Caputcu

ABSTRACT

Adsorption and advanced oxidation processes are being extensively used for treatment of wastewater containing dye chemicals. In this study, the adsorption and Fenton behavior of iron rich Terra Rosa soil was investigated for the treatment of aqueous anthraquinone dye (Reactive Blue 19 (RB19)) solutions. The impact of pH, initial dye concentration, soil loading rate, contact time and temperature was systematically investigated for adsorption process. A maximum removal efficiency of dye (86.6%) was obtained at pH 2, soil loading of 10 g/L, initial dye concentration of 25 mg/L, and contact time of 120 min. Pseudo-first-order, pseudo-second-order, Elovich, and Weber–Morris kinetic models were applied to describe the adsorption mechanism and sorption kinetic followed a pseudo-second-order kinetic model. Moreover, Langmuir, Freundlich and Temkin isotherm models were used to investigate the isothermal mechanism and equilibrium data were well represented by the Langmuir equation. The maximum adsorption capacity of soil was found as 4.11 mg/g using Langmuir adsorption isotherm. The effect of soil loading and hydrogen peroxide (H₂O₂) dosage was solely tested for Fenton oxidation process. The highest removal efficiency of dye (89.4%) was obtained at pH 2, H₂O₂ dosage of 10 mM, soil loading of 5 g/L, initial dye concentration of 50 mg/L, and contact time of 60 min. Thermodynamic studies showed that when the adsorption dosage of dye was 25 mg/L at 293–313 K, adsorption enthalpy (ΔH) and entropy (ΔS) were negative and adsorption free energy (ΔG) was positive. This result indicated that the adsorption was exothermic. Morphological characteristics of the soil were evaluated by X-ray fluorescence (XRF), scanning electron microscopy (SEM), and attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy before and after the adsorption and oxidation process.

Key words | adsorption kinetics, Fenton oxidation, Reactive Blue 19, Terra Rosa soil, thermodynamic

INTRODUCTION

Water pollution is a growing environmental problem and different solutions should be found to protect environmental resources. On the other hand, water pollution is continuously increasing and extensive scientific efforts are carried out to solve the environmental problems worldwide. Numerous industrial activities yield water pollution and the textile industry consumes a substantial amount of water resources during the production process and discharges low degradability wastes. The textile sector produces wastewater with several harmful contaminants, i.e. toxic compounds, acidic–caustic chemicals and several dyes (Al-Ghouti et al. 2005). Dye chemicals deliver environmental risks, especially to human health, aquatic species and micro-organisms because of their carcinogenic, mutagenic, teratogenic, and toxic properties (Guaratini & Zanoni 2000). Colored compounds affect the nature of water and inhibit sunlight penetration as well as reduce photosynthetic activity (Sivaraj et al. 2001). Anthraquinone dyes are the second most important class of dyes used by the textile industry and locate considerable importance in textile effluents. In contrast to the azo dyes, which have no natural counterparts, the anthraquinone chromogen provides all the important natural red dyes (Gordon & Gregory 1987).
Adsorption technologies were associated with low cost and high efficiency processes in the treatment of different kinds of industrial wastewater due to the high affinity for removing of organic matters (Bangash & Alam 2003; Ncibi et al. 2009). Until now, extensive amount of studies has been performed to find low-cost adsorbents such as wood chips, peat, cow dung ash, sugarcane bagasse, ash char, rice husk residue, and coconut residual fiber (Low et al. 2000; Moreira et al. 2001; Allen et al. 2004; Rattan et al. 2008; Silva et al. 2011; Li et al. 2016; Rani et al. 2017). The use of soils as an adsorbent for the treatment of wastewater is a potential alternative material to conventional treatments (Fil et al. 2014; Murali et al. 2015; Russiarani & Balakrishanan 2015). Terra Rosa soil generally includes clay minerals such as Kaolinite-Montmorillonite-Illite and iron oxides minerals such as hematite-goethite, quartz and feldspar minerals (Bronger et al. 1985; Torrent & Cabedo 1986; Boero & Schwertmann 1989; Boero et al. 1992; Durn et al. 1999).

In this study, Terra Rosa soil was investigated as a low-cost adsorbent for the removal of Reactive Blue 19 (RB19) dye which is widely used in textile industries. Sorption experiments were carried out for adsorption kinetics and equilibrium studies. The factors affecting the sorption process such as pH, initial dye concentration, soil loading, contact time, and temperature were investigated. Pseudo-first-order, pseudo-second-order, Elovich, and Weber–Morris kinetic models were used to describe the adsorption mechanism. Langmuir, Freundlich, and Temkin isotherm models were performed to the experimental data. Mean-time, Fenton studies were also performed using different soil loading and H₂O₂ dosage. X-ray fluorescence (XRF), scanning electron microscopy (SEM) and attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy were evaluated for soil characterization before and after the adsorption and oxidation process.

MATERIALS AND METHODS

Geography and geology of soil

Terra Rosa soil is collected from the location at the northern parts of Mersin City (Figure 1). The soil was sampled in the surface layers (0–20 cm). The average of annual moisture content is about 62% at the region which has average annual temperature of 19.1 °C and total annual rainfall of 592 mm. Soil which develops on the different source of limestone, attention-grabbing with red color and clay are called ‘Red Mediterranean Soils’ or ‘Terra Rosa’ (Kubiena 1953; Yaalon 1997; Günal 2006). Iron hydroxides in the soil lose the water from their structure because of the seasonally lack of water caused from climatic conditions. Iron oxides which develop as the result of water loss, supply red color to the soil with covering clay and other particles (Yaalon 1997; Günal 2006).

The soil was washed with distilled water several times to remove all the dirty particles adhering to the surface. The washed adsorbents were dried in an oven at 105 °C for 24 h. Then, the dried soil was grounded and sieved to obtain the particle size of 250 μm. Finally, the soil samples were stored in an airtight container.

Dye specifications and solution preparation

The anthraquinone dye, Remazol Brilliant Blue R (Reactive Blue 19) (Color Index Number 61200), was obtained from Sigma-Aldrich. The characterization of the dye is presented in Table 1.
The stock solution of RB19 dye (500 mg/L) was prepared by dissolving 0.5 g of dye in 1,000 mL of deionized water. Tap water was purified in the laboratory by means of a Milli-Q system (Millipore). The required lower concentrations (25, 50, 100 mg/L) were prepared by dilution of the stock solution. Hydrochloric acid (HCl) and sodium hydroxide (NaOH) were used for pH adjustment. The pH measurements were carried out with a glass electrode (Hach Lange HQ40d Model pH meter).

A UV/VIS Spectrometer (T+90, PG Instruments Ltd) was used to analyze the concentration of dye in solutions at 590 nm. Calibration curves were prepared between 5 and 200 mg/L. Precision of the parallel measurements was as ±2%SD.

Data analysis

The amount of RB19 adsorbed by the Terra Rosa soils, \(q_e \) (mg/g), was calculated by Equation (1):

\[
\text{Adsorption capacity (} q_e \text{)} = \frac{(C_0 - C_e) \cdot V}{m} \quad (1)
\]

The dye removal percentage was calculated by Equation (2):

\[
\text{Color removal (\%)} = \frac{C_0 - C_e}{C_0} \times 100 \quad (2)
\]

Table 1 | Physico-chemical specifications of RB19 dye

<table>
<thead>
<tr>
<th>Specification</th>
<th>Remazol Brilliant Blue R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical structure</td>
<td></td>
</tr>
<tr>
<td>Molecular formula</td>
<td>(\text{C}{22}\text{H}{16}\text{N}{2}\text{Na}{2}\text{O}{11}\text{S}{3})</td>
</tr>
<tr>
<td>Synonym</td>
<td>Reactive Blue 19</td>
</tr>
<tr>
<td>Appearance</td>
<td>Crystalline powder</td>
</tr>
<tr>
<td>Solubility</td>
<td>Soluble in water</td>
</tr>
<tr>
<td>Dye content</td>
<td>~50%</td>
</tr>
<tr>
<td>Molecular weight</td>
<td>626.54 g mol(^{-1})</td>
</tr>
<tr>
<td>Max. wavelength</td>
<td>590 nm</td>
</tr>
</tbody>
</table>

where \(C_0 \) and \(C_e \) are the initial and equilibrium concentrations of RB19 in solution (mg/L), respectively. \(V \) is the total volume of the RB19 solution (L), and \(m \) is the mass of Terra Rosa soil (g).

Adsorption kinetic and isotherm studies

Adsorption kinetic

In this study, pseudo-first-order, pseudo-second-order, Elovich, and Weber–Morris equations were used to describe the adsorption mechanism.

The pseudo-first-order model equation is:

\[
\log (q_e - q_t) = \log (q_e) - \frac{k_1}{2.303} t \quad (3)
\]

where \(q_e \) (mg/g) is the amount of adsorbed dye at the point of equilibrium, \(q_t \) (mg/g) is the amount of adsorbed dye at time \(t \), and \(k_1 \) (min\(^{-1}\)) is the rate constant which can be calculated from the straight-line plot of \(\log(q_e-q_t) \) vs \(t \).

The pseudo-second-order model equation is:

\[
\frac{t}{q_t} = \frac{1}{k_2 q_e^2} + \frac{1}{q_e} (t) \quad (4)
\]

where \(q_e \) (mg/g) is the amount of adsorbed dye at the equilibrium time, \(q_t \) (mg/g) is the amount of adsorbed dye at time \(t \), and \(k_2 \) (min\(^{-1}\)) is the rate constant which can be calculated from the straight-line plot of \(t/q_t \) vs \(t \).

The Elovich model equation is:

\[
q_t = \frac{1}{\beta} \ln(\alpha \beta) + \frac{1}{\beta} \ln(t) \quad (5)
\]

where \(\alpha \) is the initial adsorption rate (mg/g-min) and \(\beta \) is the desorption constant (g/mg) which can be calculated from the straight-line plot of \(q_t \) vs \(\ln(t) \).

The Weber–Morris model equation is:

\[
q_t = k_{id} t^{1/2} + I \quad (6)
\]

where \(q_t \) (mg/g) is the amount of adsorbed dye at time \(t \), \(k_{id} \) (mg/g-min\(^{1/2}\)) is the rate constant for intraparticle diffusion and \(I \) is intercept which can be calculated from the straight-line plot of \(q_t \) vs \(t^{1/2} \).

Adsorption isotherm

In this study, Langmuir, Freundlich, and Temkin equations were used to investigate the isothermal mechanism on the
adsorption process. The Langmuir equation is designed to homogeneous sorption, while the Freundlich equation is applicable to heterogeneous sorption.

The Langmuir isotherm equation is:

\[\frac{C_e}{q_e} = \frac{1}{Q_o b} + \frac{C_e}{Q_o} \quad (7) \]

where \(C_e \) (mg/L) is the concentration of dye at equilibrium; \(q_e \) is the amount of absorbed dye at time; \(Q_o \) (mg/g) is the maximum adsorption capacity; \(b \) is the Langmuir rate constant which can be calculated from the straight-line plot of \(C_e/q_e \) vs. \(C_e \).

The Freundlich isotherm equation is:

\[\log q_e = \log k_F + \left(\frac{1}{n} \right) \log C_e \quad (8) \]

where \(C_e \) (mg/L) is the concentration of dye at equilibrium; \(q_e \) is the amount of absorbed dye at time; \(k_F \) and \(n \) are the Freundlich rate constant which can be calculated from the straight-line plot of \(\log q_e \) vs. \(\log C_e \).

The Temkin isotherm equation is:

\[q_e = B \ln A + B \ln C_e \quad (9) \]

where \(C_e \) (mg/L) is the concentration of dye at equilibrium; \(q_e \) is the amount of dyes absorbed at time; \(A \) (L/g) is Temkin equilibrium binding constant; and \(B (= RT/b)(J/mol) \) is Temkin constant related to heat of sorption which can be calculated from the straight-line plot of \(q_e \) vs. \ln \(C_e \). However, \(R \) is universal gas constant (8.314 J/mol-K), \(T \) is temperature (K), \(b \) is Temkin isotherm constant.

Adsorption kinetic and isotherm studies on Terra Rosa soil were performed in batch experiments. A desired amount of the adsorbent was weighed into a 500-mL glass stoppered conical flask. The experimental parameters such as pH (1–10), soil loading (2.5–20 g/L), initial dye concentration (25–100 mg/L), and contact time (0–120 min) were evaluated for 250-mL RB19 solution (Table 2). The flasks were shaken (300 rpm) for 120 min at 25 ± 1 °C. A thermostated shaker of orbital model (KS-15, Edmund Bühler GmbH) incubator was used for adsorption and temperature experiments. Samples were analyzed versus time to determine residual dye concentration. Samples were separated by centrifugation (6,000 rpm, 5 min) before analysis. All samples were tested in triplicate and average values were presented.

In addition, adsorption isotherm was also studied at different temperatures ranging from 298 to 313 K using the thermostat orbital shaker. The soil was centrifuged and residual dye concentration in solution was measured after being equilibrated for 180 min.

Adsorption thermodynamic studies

For thermodynamic studies, RB19 solution (25 mg/L, 250-mL) containing conical flasks were placed on a rotary shaker (300 rpm) at different temperatures (25, 30, 40 °C). Samples were withdrawn periodically for residual RB19 concentration analysis.

Heterogeneous Fenton studies

The experiments were carried out in a 500-mL conical flask containing 250-mL of dye solution at pH 2.0 and dye concentration of 50 mg/L. The effect of soil loading and hydrogen peroxide (H₂O₂) dosage was tested for Fenton oxidation process. All the experiments were carried out under constant shaking (300 rpm) for 60 min at 25 ± 1 °C. Samples were analyzed versus time to determine residual dye concentration. Samples were separated by centrifugation (6,000 rpm, 5 min) before analysis. All samples were tested in triplicate and average values were presented.

<table>
<thead>
<tr>
<th>Exp. run</th>
<th>Tested parameter</th>
<th>pH</th>
<th>Soil loading (g/L)</th>
<th>Initial dye concentration (mg/L)</th>
<th>Contact time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Effect of pH</td>
<td>1–10</td>
<td>10</td>
<td>25</td>
<td>120</td>
</tr>
<tr>
<td>2</td>
<td>Effect of soil loading</td>
<td>2</td>
<td>2.5–20</td>
<td>25</td>
<td>120</td>
</tr>
<tr>
<td>3</td>
<td>Effect of initial dye concentration</td>
<td>2</td>
<td>10</td>
<td>25–100</td>
<td>120</td>
</tr>
<tr>
<td>4</td>
<td>Effect of contact time</td>
<td>2</td>
<td>10</td>
<td>25–100</td>
<td>1–120</td>
</tr>
<tr>
<td>4</td>
<td>Equilibrium tests</td>
<td>2</td>
<td>10</td>
<td>25–200</td>
<td>180</td>
</tr>
</tbody>
</table>
Soil characterization and analytical methods

The surface of soil was characterized by SEM (Zeiss/Supra 55 FE-SEM) before and after the adsorption experiments. All samples were dried and coated under vacuum with gold by a sputtering system.

XRF analyses were carried out by Thermo-Scientific and the soil samples were dried, homogenized, and sieved at 250 μm particle sizes. The XRF intensity will saturate at a certain soil thickness. The X-ray tube was operated at 40 kV, 0.3 mA for 240 s. The sample name, spectrum, and elemental composition are found in a dedicated library.

The ATR-FTIR (Perkin Elmer) spectra of samples were collected at room temperature in the range of 450–4,000 cm⁻¹.

Iron concentration was also measured using inductively coupled plasma optical emission spectrometry (ICP-OES) (Optima 7000 DV, PerkinElmer).

RESULTS AND DISCUSSION

Adsorption kinetic analysis of RB19 dye from aqueous solution

Effect of pH

The adsorption phenomena on solid surfaces are closely related with solution pH ranges from acidic to alkaline. For this reason, the effect of pH on the sorption of RB19 dye was tested at different pH values (1–10) using Terra Rosa soil at constant dye concentration (25 mg/L) and soil loading (10 g/L) (in the first row of Table 2). As shown in Figure 2, the highest dye removal (86.6%) was obtained at pH 2. Therefore, all the adsorption experiments were carried out at pH 2. However, dye sorption capacity of the soil decreased from 15.6% to 3.7% with increase of pH from 3 to 10, respectively. The results showed that the adsorption process is pH-dependent due to the surface characteristics of soil. The surface charge of Terra Rosa soil was also changed with pH, going from positive in the acidic pH region to zero at the pHₚzc around pH 3 and then negative at higher pH values. Zeta potential of soil was measured as 1.38 ± 0.35 and −30.31 ± 0.12 mV at pH 2 and pH 10, respectively. In low pH, the surface of soil material was charged with H⁺ ion and this leads to a strong electrostatic attraction between the positively charged soil surface and negatively charged dye molecules (−SO₃⁻), which caused an increasing rate in dye sorption (Ho et al. 2002).

Effect of Terra Rosa soil loading

The effect of soil loading on RB19 dye removal was tested at an optimum pH of 2 (in the second row of Table 2). Figure 3 shows the removal percentages of dye as a function of soil dosage. As represented in Figure 3, the removal of dye at doses of 2.5, 5.0, 10, 15, 20 g/L was 38.2, 73.5, 86.6, 86.6, 86.7%, respectively. The results showed that dye removal efficiency improved up to 10 g/L soil dosage and remained almost unchanged between 10–20 g/L of soil dosage. This
may be because lower soil loading supplied higher active sites. In addition, with the increase in soil loading can affect aggregation of particles which decreases in total adsorbent surface area of particles, as a result efficiency and dye uptake decreases. The aggregation may also influence an increase in diffusion path length. For this reason, 10 g/L of soil dosage was selected as an optimum value for the further experiments.

Effect of initial dye concentration and agitation time

Dye concentration was studied in the range of 25 to 100 mg/L at an optimum pH of 2 and adsorbent dosage of 10 g/L (in the third row of Table 2). Dye removal efficiency reached the maximum value of 86.6, 58.9, 39.5% for 25, 50, and 100 mg/L dye concentration, respectively (Figure 4). An interesting result was observed that at least 60% of dyes uptake was achieved in a very short contact time of 1 min for 25 mg/L dye concentration. The adsorption capacity of RB19 dye increased over time and reached a maximum value at 60 min. After this time, the adsorption capacity reached a constant value indicating that no more dye molecules were further removed from the solution (Figure 4). The result implied there was a high affinity between dye molecules and Terra Rosa soil at low dye concentration.

The calculated kinetic parameters and constants are listed in Table 3. The experimental data showed good compliance with the pseudo second-order kinetic model in terms of higher correlation coefficients ($R^2 > 0.99$). Increasing of the initial dye concentration from 25 to 100 mg/L, the adsorbed amount of dye increased from 2.38 to 3.81 mg/g. This can be explained as increasing in the driving force of the concentration can overcome mass transfer resistance of dye molecules between the aqueous and solid phases. Therefore, a higher initial dye concentration may increase the adsorption capacity (Demirbas et al. 2009).

The values of the second order rate constants (k_2) decreased from 0.143 to 0.049 g/mg-min when initial dye concentration increased from 25 to 100 mg/L, which indicated the adsorption process was highly concentration dependent (Table 3). Lower concentration of dye molecules in the aqueous solution might cause lower collisions among dye molecules, therefore dye molecules could be bonded faster to the soil’s active sites.

The values of the rate constant (k_{id}) from Weber–Morris kinetic model was increased from 0.074 to 0.150 mg/g-min$^{1/2}$ when initial dye concentration was increased from 25 to 100 mg/L. Hence, dye concentration in the aqueous solution had a mild influence on both the adsorption diffusion kinetics and the mechanism controlling the kinetic coefficient. At high initial concentrations, the concentration gradient generated between the solution and the surface of the soil particle leads to enhanced dye molecules’ diffusion through the film surrounding the particle and into the micro-porous structure of the soil (Dizge et al. 2009).

Figure 4 | Effect of initial dye concentration (25–100 mg/L) and contact time (5–120 min) on the RB19 dye removal by Terra Rosa soil (pH, 2; soil loading, 10 g/L; contact time, 120 min).

Table 3 | The adsorption kinetic parameters of RB19 dye at different initial dye concentrations

<table>
<thead>
<tr>
<th>Parameters Initial dye concentration (mg/L)</th>
<th>Pseudo-first-order</th>
<th>Pseudo-second-order</th>
<th>Elovich</th>
<th>Weber-Morris</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$q_{exp.}$ (mg/g)</td>
<td>$q_{calc.}$ (mg/g)</td>
<td>k_1 (1/min)</td>
<td>r^2</td>
</tr>
<tr>
<td>25</td>
<td>2.38</td>
<td>1.44</td>
<td>0.025</td>
<td>0.993</td>
</tr>
<tr>
<td>50</td>
<td>2.68</td>
<td>1.55</td>
<td>0.032</td>
<td>0.978</td>
</tr>
<tr>
<td>100</td>
<td>3.81</td>
<td>2.95</td>
<td>0.057</td>
<td>0.863</td>
</tr>
</tbody>
</table>
Adsorption isotherm and thermodynamic analysis

The adsorption isotherm was studied to determine the relationship between capacity of soil and the equilibrium concentration of dye in the aqueous phase. Three isotherm models (Langmuir, Freundlich, Temkin) were tested. Figure 5 represents the plotted models and the isotherm constant is shown in Table 4. The results indicated that the r^2 value of the Langmuir plot is higher than the other models (Figure 5(a)). Therefore, dye molecules are accepted to be adsorbed as a monolayer on adsorption sites of soil. The maximum capacity of soil was found to be 4.11 mg/g. Additionally, the Freundlich constant (n) is between 1 and 10, which proves that Terra Rosa soil is a favorable adsorbent for RB19 dye (Figure 5(b)). Table 4 also shows that low correlation was obtained with the Temkin isotherm ($r^2 = 0.655$). According to Figure 5(c), the Temkin adsorption potential ($A = 24.91$ L/g, $B = 0.494$ J/mol) is an indication of the heat of sorption between dye molecules and soil surface. This indicated that the heat of adsorption

![Figure 5](https://iwaponline.com/wst/article-pdf/76/11/3114/210842/wst076113114.pdf)

<table>
<thead>
<tr>
<th>Langmuir constant</th>
<th>Freundlich constant</th>
<th>Temkin constant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q_o (mg/g)</td>
<td>b (L/mg)</td>
<td>r^2</td>
</tr>
<tr>
<td>4.11</td>
<td>0.17</td>
<td>0.964</td>
</tr>
<tr>
<td></td>
<td>n</td>
<td>k_f (mg/g)</td>
</tr>
<tr>
<td></td>
<td>6.12</td>
<td>4.07</td>
</tr>
<tr>
<td></td>
<td>B (J/mol)</td>
<td>A (L/g)</td>
</tr>
<tr>
<td></td>
<td>0.49</td>
<td>24.91</td>
</tr>
</tbody>
</table>
of RB19 dye molecules onto the surface of soil particles decreased with increasing temperature from 293 to 313 K and the sorption is exothermic. Also, the b value (5.01 kJ/mol) indicated a weak interaction between dye molecules and soil particles, supporting an ion-exchange mechanism for the present study (Shahmohammadi-Kalalagh et al. 2011).

The thermodynamic model enhances the calculation of enthalpy, entropy, and Gibbs free energy change. Thermodynamic parameters were calculated using the following equations.

 Enthalpy (\(\Delta H^0\)) and entropy (\(\Delta S^0\)) change:

 \[
 \log K = \frac{\Delta S^0}{2.303 R} - \frac{\Delta H^0}{2.303 R} \left(\frac{1}{T}\right) \tag{10}
 \]

 \(\Delta H^0\) and \(\Delta S^0\) changes were found from the slope and intercept of the plot of \(\log K\) as a function of \(1/T\), respectively.

 Gibbs free energy (\(\Delta G^0\)) change:

 \[
 \Delta G = -2.303 \times R \times T \times \log K \tag{11}
 \]

where K (=b) is the adsorption isotherm constant, R is the gas constant (8.314 J/K·mol), T is the absolute temperature (K).

The thermodynamic studies were carried out at 293, 303, and 313 K with initial dye concentration of 25 mg/L, adsorbent dosage of 10 g/L, and pH 2. The thermodynamic results are shown in Table 5. The negative value of the change in enthalpy (−50.81 kJ/mol) indicated that the adsorption was physico-chemical in nature and also exothermic, thereby demonstrating that the process was stable energetically. The negative entropy change (\(\Delta S^0\)) value (−0.18 kJ/mol·K) corresponds to a decrease in randomness at the solid–liquid interface. The positive Gibbs free energy (\(\Delta G^0\)) indicated the reaction was not feasible at this temperature and the reaction was reversible.

Table 5: Values of thermodynamic parameters for adsorption of RB19 dye on Terra Rosa soil

<table>
<thead>
<tr>
<th>T (K)</th>
<th>(K_c)</th>
<th>(\Delta G^0) (kJ/mol)</th>
<th>(\Delta H^0) (kJ/mol)</th>
<th>(\Delta S^0) (kJ/mol·K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>293</td>
<td>0.47</td>
<td>1.84</td>
<td>−50.81</td>
<td>−0.18</td>
</tr>
<tr>
<td>303</td>
<td>0.27</td>
<td>3.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>313</td>
<td>0.13</td>
<td>5.39</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Heterogeneous Fenton studies

In this study, the heterogeneous Fenton reaction was tested because the iron content of the Terra Rosa was high and the highest adsorption efficiency (86.6%) was obtained at pH 2. Therefore, pH (2) and temperature (25 ± 1 °C) were kept constant and the effect of soil loading (1, 5, 10, 20 g/L) and \(H_2O_2\) dosage (10, 20, 50 mM) was solely tested on the decolorization of RB19 at 50 mg/L dye concentration (Figure 6).

Results in Figure 6(a) indicate that increasing soil loading from 1 to 10 g/L increased the dye removal (from 68.1 to 90.0%) but further rise to 20 g/L had significant drop on dye removal (71.9%). Because increasing soil loading provided additional surface area for adsorption and an additional amount of Fe ions for the formation of OH· radicals, however, further increase in the iron rich soil amount significantly decreased the color removal efficiency, which could be attributed to the inhibition effect caused by excess iron ions in the heterogeneous Fenton reaction that acted as scavengers as shown by Equation (12) (Merlain et al. 2016).

\[
Fe^{2+} + OH_• \rightarrow Fe^{3+} + OH^- \tag{12}
\]

On the contrary, increasing \(H_2O_2\) dosage from 0 to 50 mM had adverse effect on dye removal (from 27.5 to 62.6%) and significant drop occurred when 50 mM dosage was used (Figure 6(b)). Since 10 mM \(H_2O_2\) dosage was sufficient for stoichiometric reaction and excess \(H_2O_2\) dosage caused OH· radical quencher, consequently lowering the OH· radical concentration (Equations (13) and (14)). Muruganandham et al. also confirmed that excess \(H_2O_2\) acted as OH· radical quencher when photochemical oxidation of reactive azo dye with UV–\(H_2O_2\) process was performed (Muruganandham & Swaminathan 2004). The same effect was also observed when heterogeneous photo-Fenton oxidation of reactive azo dye solutions using iron exchanged zeolite catalyst was used (Tekbas et al. 2008).

\[
H_2O_2 + OH_• \rightarrow HO_2^- + H_2O \tag{13}
\]

\[
H_2O_2^- + OH_• \rightarrow H_2O + O_2 \tag{14}
\]

To demonstrate that the process is considered as essentially heterogeneous, leached iron concentrations into the solution were measured in 60 min final time and found less than 0.2 mg/L. Hence, this amount was very small considering the iron content of the soil loading.
Adsorbent characterization before and after the adsorption and Fenton process

XRF analysis was performed to know chemical composition of the minerals in raw soil, after adsorption and Fenton oxidation (Table 6). Alumina, silica, and iron oxides were the major component and the others were trace quantities. Some components’ values, such as NiO, ZnO, Rb₂O, SrO and ZrO₂, were below detection limits after adsorption process. According to the table, clay and hematite minerals were the major component of samples mineralogically.

The FTIR spectra analysis of raw soil, after adsorption and Fenton oxidation are shown in Table 7. The FTIR spectra revealed that various functional groups were detected on the surface of soil. There were some peaks that had shifted

Table 6 | XRF analyses of raw soil, after adsorption and Fenton oxidation

<table>
<thead>
<tr>
<th>Chemical composition</th>
<th>Raw soil (weight %)</th>
<th>After adsorption (weight %)</th>
<th>After Fenton (weight %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na₂O</td>
<td>0.266</td>
<td>0.670</td>
<td>0.370</td>
</tr>
<tr>
<td>MgO</td>
<td>3.005</td>
<td>2.320</td>
<td>2.827</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>21.777</td>
<td>22.020</td>
<td>21.995</td>
</tr>
<tr>
<td>SiO₂</td>
<td>54.305</td>
<td>54.640</td>
<td>54.304</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.238</td>
<td>0.230</td>
<td>0.235</td>
</tr>
<tr>
<td>SO₃</td>
<td>0.235</td>
<td>0.431</td>
<td>0.254</td>
</tr>
<tr>
<td>Cl</td>
<td>0.104</td>
<td>0.140</td>
<td>0.124</td>
</tr>
<tr>
<td>K₂O</td>
<td>3.223</td>
<td>3.050</td>
<td>3.115</td>
</tr>
<tr>
<td>CaO</td>
<td>2.643</td>
<td>2.480</td>
<td>2.580</td>
</tr>
<tr>
<td>TiO₂</td>
<td>1.530</td>
<td>1.450</td>
<td>1.525</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>0.041</td>
<td>0.280</td>
<td>0.045</td>
</tr>
<tr>
<td>MnO</td>
<td>0.230</td>
<td>0.029</td>
<td>0.222</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>12.254</td>
<td>12.260</td>
<td>12.260</td>
</tr>
<tr>
<td>NiO</td>
<td>0.034</td>
<td>–</td>
<td>0.032</td>
</tr>
<tr>
<td>ZnO</td>
<td>0.032</td>
<td>–</td>
<td>0.030</td>
</tr>
<tr>
<td>Rb₂O</td>
<td>0.019</td>
<td>–</td>
<td>0.017</td>
</tr>
<tr>
<td>SrO</td>
<td>0.021</td>
<td>–</td>
<td>0.020</td>
</tr>
<tr>
<td>ZrO₂</td>
<td>0.045</td>
<td>–</td>
<td>0.045</td>
</tr>
</tbody>
</table>

Table 7 | FTIR analyses of raw soil after adsorption and Fenton oxidation

<table>
<thead>
<tr>
<th>Raw soil (cm⁻¹)</th>
<th>After adsorption (cm⁻¹)</th>
<th>After Fenton (cm⁻¹)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,697</td>
<td>3,697</td>
<td>3,697</td>
<td>Al–O–H stretching</td>
</tr>
<tr>
<td>3,620</td>
<td>3,622</td>
<td>3,621</td>
<td>Al–O–H (inter-octahedral)</td>
</tr>
<tr>
<td></td>
<td>–</td>
<td>2,972</td>
<td>Symmetric C–H stretching</td>
</tr>
<tr>
<td>1,635</td>
<td>1,637</td>
<td>1,636</td>
<td>H–O–H stretching</td>
</tr>
<tr>
<td>912</td>
<td>912</td>
<td>912</td>
<td>Al–O–H stretching</td>
</tr>
<tr>
<td>797</td>
<td>797</td>
<td>797</td>
<td>Si–O stretching.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Si–O–Al stretching.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Al. Mg)–O–H</td>
</tr>
<tr>
<td>778</td>
<td>779</td>
<td>779</td>
<td>Si–O stretching</td>
</tr>
<tr>
<td>693</td>
<td>693</td>
<td>693</td>
<td>Si–O stretching.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Si–O–Al stretching</td>
</tr>
<tr>
<td>527</td>
<td>531</td>
<td>531</td>
<td>C–O. C–C out of plane bending</td>
</tr>
<tr>
<td>467</td>
<td>467</td>
<td>469</td>
<td>Si–O stretching.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Si–O–Fe stretching</td>
</tr>
</tbody>
</table>

Figure 6 | (a) Effect of soil loading (pH, 2; H₂O₂ dosage, 20 mM; initial dye volume and concentration, 250 mL and 50 mg/L; temperature, 25 ± 1°C) and (b) H₂O₂ dosage (pH, 2; soil loading, 5 g/L; initial dye volume and concentration, 250 mL and 50 mg/L; temperature, 25 ± 1°C) on the removal of RB 19 dye by Fenton reaction.
or disappeared and new peaks were also detected in the RB19 adsorbed dye by Terra Rosa. According to FTIR analyses, OH-stretching fundamental spectrums were 3,694 cm$^{-1}$ and 3,620 cm$^{-1}$ at hydroxyl groups with alumina. After adsorption and Fenton reactions, a new spectrum was observed about 2,970 cm$^{-1}$. Si-O stretching can be observed at about 1,000 cm$^{-1}$. Major spectrums and the fingerprints showed that Terra Rosa soil mineralogically contained Mont-morillonit, hematite and quartz minerals.

The SEM of the raw soil was compared after adsorption and Fenton oxidation process (Figure 7). The aggregations were seen when raw and after adsorption while it decreased after Fenton oxidation.

RB19 dye decolorization using Terra Rosa soil is shown in Figure 8. It was clearly seen from the figure that pH of aqueous solution was important to decolorize RB19 dye.
using Terra Rosa soil. The photo on the left belongs to pH 2 dye solution before adsorption process. The photo on the right belongs to pH 2 dye solution after adsorption process whereas no effect was observed at pH 5.3 (original pH) (middle photo).

Several studies have been performed using various types of adsorbents for RB19 dye adsorption. Table 8 summarizes a comparison of some recent publication for optimum adsorption conditions and maximum capacity. Terra Rosa soil showed comparable adsorption capacity with respect to other adsorbents, revealing that soil is an attractive, feasible, and novel low-cost adsorbent.

CONCLUSIONS

In the present work, Terra Rosa soil was investigated for the removal of RB19 dye from aqueous solution. Adsorption experiments showed that the adsorption of RB 19 dye by soil was feasible under highly acidic conditions. Pseudo-second-order and Langmuir models fit the kinetic and equilibrium experimental data, respectively. The maximum adsorption capacity was found to be 3.81 mg/g. Moreover, the heterogeneous Fenton reaction was tested because the iron content of the Terra Rosa was high and the highest dye removal efficiency (89.4%) was obtained at pH 2. The Fenton studies indicated that increasing soil loading caused increase of dye removal up to 10 g/L but further rise to 20 g/L had significant drop on dye removal. However, increasing H_2O_2 dosage had an adverse effect on dye removal and significant drop was detected. As a result, Terra Rosa soil can be considered as an efficient, inert, nontoxic, environmentally friendly, easily available, and economical adsorbent for industrial applications.

ACKNOWLEDGEMENTS

This study was supported by the Research Fund of Mersin University in Turkey with Project Number: 2017-1-AP4-2212.

REFERENCES

Table 8 Comparison of recently published literature on RB19 dye removal by different adsorbents

<table>
<thead>
<tr>
<th>Adsorbent</th>
<th>pH</th>
<th>Kinetic model</th>
<th>Isotherm model</th>
<th>Adsorption capacity (mg/g)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terra Rosa soil</td>
<td>2</td>
<td>Pseudo-second order</td>
<td>Langmuir isotherm</td>
<td>4.11</td>
<td>This study</td>
</tr>
</tbody>
</table>
Fil, B. A., Yilmaz, M. T., Bayar, S. & Elkoca, M. T. 2014
Investigation of adsorption of the dyestuff astrazon red violet
3Rn (basic violet 16) on montmorillonite clay. Brazilian J.
Chem. Eng. 31 (01), 171–182.
Organic Chemistry in Colour, Part of the series Springer
25, 71–78.
Günel, H. 2006 Pedogenesis and classification of soils located on
two consecutive topographies. Gaziosmanpaşa Üniversitesi
Ziraat Fakültesi Dergisi 23 (2), 59–68.
Ho, Y. S., Porter, J. F. & McKay, G. 2002 Equilibrium isotherm
studies for the sorption of divalent metal ions onto peat: copper, nickel and lead single component systems. Water
Air Soil Pollut. 141, 1–33.
Li, Y., Zhang, X., Yang, R., Li, G. & Hu, C. 2016 Removal of dyes
from aqueous solutions using activated carbon prepared from
Low, K. S., Lee, C. K. & Tan, B. F. 2000 Quaternised wood as
sorbent for reactive dyes. Appl. Biochem. Biotechnol. 87,
233–245.
Ferreira, M. A. 2015 Adsorption of Remazol Brilliant Blue on an
Merlaim, T. G., Nanganoa, L. T., Desire, B. B. P., Nsami, N. J. &
Mbadcam, K. J. 2016 Fenton-like oxidation of Acid Yellow 23
Moreira, R. F. P. M., Soares, J. L., José, H. J. & Rodrigues, A. E.
2001 The removal of reactive dyes using high-asphalt char.
Murali, R., Murthy, C. N. & Sengupta, R. A. 2003 Adsorption
studies of toxic metals and dyes on soil colloids and their
Technol. 12, 5563–5574.
Muruganandham, M. & Swaminathan, M. 2004 Photochemical
oxidation of reactive azo dye with UV–H2O2 process. Dyes
Ncibi, M. C., Hamissa, B. A., Fatallah, A., Kortas, M. H.,
Baklouti, T., Mahjoub, B. & Seifen, M. 2009 Biosorptive
uptake of methylene blue using Mediterranean green alga
synthetic dye Remazol Brilliant R from textile industry
wastewaters by biosorption on the macrophyte Salvinia
Rahmat, N. A., Ali, A. A., Salmiati, N., Hussain, M. S., Muhamad,
R. A. & Hadibarata, K. T. 2016 Removal of Remazol Brilliant
Blue R from aqueous solution by adsorption using pineapple
leaf powder and lime peel powder. Water Air Soil Pollut.
Rani, K. C., Naik, A., Chaurasiya, R. S. & Raghavarao, K. S. M. S.
2017 Removal of toxic Congo red dye from water employing
low-cost coconut residual fiber. Water Sci. Tech. 75 (9),
2225–2236.
Rattan, V. K., Puria, A., Singh, Ha. & Manoochehri, M. 2008
Adsorption of dyes from aqueous solution by cow dung ash.
blue dye on termite soil. Int. J. Biosci. Nanosci. 2 (8),
175–184.
Shahmohammadi-Kalalagh, S., Babazadeh, H., Nazemi, A. &
Manshouri, M. 2011 Isotherm and kinetic studies on
adsorption of Pb, Zn and Cu by kaolinite. Caspian Journal of
Environmental Sciences 9, 243–255.
Silva, L. G., Ruggiero, R., Gontijo, P. M., Pinto, R. B., Royer, B., Lima,
E. C., Fernandes, T. H. M. & Calvete, T. 2011 Adsorption of
Brilliant Red 2BE dye from water solutions by a chemically
Sivaraj, R., Namisivayam, C. & Kadirvelu, K. 2001 Orange peel as
an adsorbent in the removal of acid violet 17 (acid dye) from
Tekbas, M., Yatmaz, H. C. & Bektas, N. 2008 Heterogeneous
photo-Fenton oxidation of reactive azo dye solutions using
iron exchanged zeolite as a catalyst. Microporous and
Torrent, J. & Cabello, A. 1986 Sources of iron oxides in reddish
brown soil profiles from calcarenites in southern Spain.
Geoderma 37, 57–66.

First received 28 February 2017; accepted in revised form 4 August 2017. Available online 4 September 2017