Improved removal performance and mechanism investigation of papermaking wastewater treatment using manganese enhanced Fenton reaction

Yingcai Wang, Can Wang, Shuai Shi and Shuai Fang

ABSTRACT

The effects of Mn(II) on Fenton system to treat papermaking wastewater and the mechanism of Mn(II) enhanced Fenton reaction were investigated in this study. The chemical oxygen demand (COD) removal efficiency was enhanced in the presence of Mn(II), which increased by 19% compared with that of the Fenton system alone. The pseudo-first order reaction kinetic rate constant of Mn(II)/Fenton system was 2.11 times higher than that of Fenton system. 67%–81% COD were removed with the increasing Mn(II) concentration from 0 to 0.8 g/L. COD removal efficiency was also enhanced in a wider pH range (3–7), which indicated the operation parameters of Fenton technology could be broadened to a milder condition. The study of the mechanism showed that Mn(II) participated in the oxidation and coagulation stages in Fenton system. In the oxidation stage, Mn(II) promotes the production of HO2•/O2•−, then HO2•/O2•− reacts with Fe(III) to accelerate the formation of Fe(II), and finally accelerates the production of HO•. Meantime MnMnO3 and Fe(OH)3 forms in the coagulation stage, facilitating the removal of suspended substances and a large amount of COD, which enhances the overall COD removal of papermaking wastewater. This study provided a detailed mechanism to improve practical applications of Fenton technology.

Key words | coagulation, Fenton system, manganese, oxidation, papermaking wastewater

INTRODUCTION

The pulp and paper industry is a high water-consumption industry in which 76 to 227 m³ water need to be utilized for each ton of product, generating huge quantities of wastewater and thereby causing concomitant problems for the environment and economy (Khansorthong & Hunsom 2009). Nowadays, in the papermaking industry, the main treatment process involves clarification as a primary process and biological treatment as a secondary process. However, these treatments could not meet the water quality requirements since high chemical oxygen demand (COD), toxicity, and color remain in the effluent (Ciputra et al. 2011). Besides, the COD, which consists of persistent substances, could not be further degraded by the subsequent biological process (Jamil et al. 2011). Considering the increasingly strict standards of environmental protection and discharge limitations, other treatment methods are needed to meet these rigorous standards. Advanced oxidation processes (AOPs) seem to be a promising alternative.

Fenton processes have produced better overall results treating pulp and paper mill effluents than other AOP-based treatment technologies (Hermosilla et al. 2015) due to the mild operating conditions (room temperature and atmospheric pressure), and high oxidation efficiency (Garg et al. 2010). The hydroxyl radical (HO•) is generally considered as the active oxidizing intermediate in the Fenton system (Tizaoui et al. 2010). Fenton reactions can be initiated when hydrogen peroxide (H2O2) reacts with Fe(II) (Equation (1)) to produce HO• (Neyens & Baeyens 2003; Garrido-Ramírez et al. 2010).

$$\text{Fe}^{2+} + \text{H}_2\text{O}_2 \rightarrow \text{Fe}^{3+} + \text{HO}\bullet + \text{OH}^- \quad k_1 = 76 \text{ M}^{-1} \text{s}^{-1} \ (1)$$

This catalytic reaction can be accelerated by more Fe(II), which reduces from Fe(III) through Equation (2), and more radicals are generated in these oxidation-reduction reactions by Equations (3)-(5) (Garrido-Ramírez et al. 2010).

$$\text{Fe}^{2+} + \text{Fe}^{3+} \rightarrow 2\text{Fe}^{2+}$$

$$\text{HO}\bullet + \text{Fe}^{2+} \rightarrow \text{Fe}^{3+} + \text{HO}^-$$

$$\text{Fe}^{2+} + \text{O}_2 \rightarrow \text{Fe}^{3+} + \text{O}_2^-$$

$$\text{Fe}^{2+} + \text{HO}_2\bullet \rightarrow \text{Fe}^{3+} + \text{HO}_2^-$$

$$k_2 = 3 \times 10^{12} \text{ M}^{-1} \text{s}^{-1}$$

$$k_3 = 1.6 \times 10^7 \text{ M}^{-1} \text{s}^{-1}$$

$$k_4 = 1 \times 10^7 \text{ M}^{-1} \text{s}^{-1}$$

$$k_5 = 4 \times 10^5 \text{ M}^{-1} \text{s}^{-1}$$
mental effect. Some researchers found that synthesized
attention in Fenton system because of its benign environ-
to maximize the coagulation stage (Fang et al. 2010).
activity of an Mn(II)/Fenton system could be attributed to
production of HO2•/O2•⁻ in the oxidation stage of
Fenton system, showing the ability to degrade recalcitrant
contaminants (Furman et al. 2009; Carvalho et al. 2014).
However, the effects of Mn(II) on the efficiency of Fenton
system have not been investigated in detail, the mechanism
of Mn(II)/Fenton for treating papermaking wastewater is
not fully reported. Besides, few studies are involved in the
removal process of the oxidation and coagulation stages
with the presence of Mn(II), which might inhibit its further
applications. Therefore, it is imperative to determine
the mechanism of manganese enhanced Fenton reaction in
two stages (oxidation and coagulation stages) for its broader
application in papermaking wastewater treatments.

In this study, the effects of Mn(II) on Fenton system to
treat papermaking wastewater were conducted through
comparing COD removal efficiencies and reaction kinetics
in two different stages. In addition, the initial Mn(II) con-
centration and pH were selected and considered as
operation parameters that might have effects on COD
removal efficiencies. The objective of this study was to pro-
pose the possible mechanism of Mn(II) enhanced Fenton
reaction in oxidation and coagulation stages.

MATERIALS AND METHODS

Wastewater samples and reagents

The papermaking wastewater samples were collected in a sec-
ondary sedimentation tank from a papermaking company in
Shandong. The detailed information and characteristics of
papermaking wastewater samples are described in Text S1,
which can be found in the supplementary material (available
with the online version of this paper). All chemicals
and reagents used in our study were of analytical grade. Hydro-
gen peroxide (H2O2, 30%, wt %), sodium hydroxide (NaOH),
hydrochloric acid (HCl) were purchased from Tianjin Kermel
Chemical Reagent Co., Ltd, China. Ferrous sulfate heptahy-
drate (FeSO4·7H2O), and manganese sulfate (MnSO4) were
purchased from Sinopharm Chemical Reagent Co., Ltd, China.

Analytical method

The COD was determined according to the spectropho-
tometry method (Hach, Japan). The pH of the solution
was measured by a pH meter (Mettler Toledo, FE28-Standard,
Switzerland). The hydroxyl radicals were monitored
by fluorescence method with aromatic hydroxylation

\[\text{Fe}^{3+} + \text{H}_2\text{O}_2 \rightarrow \text{Fe}^{2+} + \text{HO}_2^{-}/\text{O}_2^{-} + \text{H}^+ \]
\[k_2 = 2 \times 10^{-3} \text{ M}^{-1} \text{ s}^{-1} \quad (2) \]

\[\text{Fe}^{2+} + \text{HO}_2^{-} \rightarrow \text{Fe}^{3+} + \text{HO}_2^{-} \]
\[k_3 = 1.3 \times 10^{6} \text{ M}^{-1} \text{ s}^{-1} \quad (3) \]

\[\text{Fe}^{3+} + \text{HO}_2^{-}/\text{O}_2^{-} \rightarrow \text{Fe}^{2+} + \text{O}_2 + \text{H}^+ \]
\[k_4 = 1.2 \times 10^{6} \text{ M}^{-1} \text{ s}^{-1} \quad (4) \]

\[\text{H}_2\text{O}_2 + \text{HO}^- \rightarrow \text{HO}_2^{-}/\text{O}_2^{-} + \text{H}_2\text{O} \]
\[k_5 = 2.7 \times 10^{7} \text{ M}^{-1} \text{ s}^{-1} \quad (5) \]

HO⁻ can attack and oxidize organic pollutant molecules
(RH) by abstracting protons. Highly reactive organic rad-
icals (R) are produced in this process and could be further
oxidized through Equation (6).

\[\text{RH} + \text{OH}^- \rightarrow \text{H}_2\text{O} + \text{R} \rightarrow \text{further oxidation} \quad (6) \]

Generally, the Fenton-coagulation reaction consists of
the following stages: pH adjustment, oxidation reaction, neu-
tralization, coagulation, and precipitation (Wu et al. 2010).
Organic substances could be removed through the oxidation
and coagulation process. Although the overall reaction rate of
Fenton process is governed by the reduction rate of Fe(III) to
Fe(II), the degradation efficiency is not only related to the
radical oxidation process but also depends greatly on the
chemical coagulation process. Thus, strategies have been con-
sidered to improve the efficiency of Fenton system. Some
studies have opted for transition metals, such as copper
(Nichela et al. 2013), manganese (Wang et al. 2018), and
cobalt (Öturan et al. 2010), as iron substitutes to catalyze
H2O2 to improve the Fenton oxidation efficiency. Among
these strategies, Fenton-coagulation process is widely applied
to maximize the coagulation stage (Fang et al. 2015).

As a common transition metal, manganese has received
attention in Fenton system because of its benign environ-
mental effect. Some researchers found that synthesized
α-MnO2, β-MnO2, and γ-MnO2 showed good abilities to
decompose rhodamine B (RB) (Sui et al. 2009), methylene
blue (MB) (Yu et al. 2014), and hexachloroethane (HCA)
in the presence of H2O2 (Furman et al. 2009). Other
researchers made use of Mn-incorporated Fe3O4/FeSO4 to
enhance the degradation of organic pollutants in Fenton
system (Carvalho et al. 2014). The enhanced degradation

Downloaded from https://iwaponline.com/wst/article-pdf/77/10/2509/235050/wst077102509.pdf by guest
reaction and l-phenylalanine (l-Phe) was selected as a fluorescent probe for HPLC analysis. HPLC-analysis was performed on a HP1100 Hewlett-Packard system (Agilent, USA), equipped with a Zorbax Eclipse XDB-C18 (150 mm × 4.6 mm) column and an HP1100 fluorescence detector (FLD). A mixture of methanol, water and phosphoric acid (60:39:1) (v/v) was used as the mobile phase. The flow rate was 1 ml/min and the injection volume was 5 μL. The FLD was set at 277 nm for the excitation wavelength and 306 nm for the emission wavelength. More detailed information about the analytical methods can been found in Text S2 and Text S3 (available online).

Effects of Mn(II) on papermaking wastewater degradation by oxidation system

All experiments of oxidation were performed in 100 ml glass beakers at room temperature (25 ± 1 °C) and atmospheric pressure. Fenton reactions were triggered by the introduction of FeSO₄·7H₂O and H₂O₂ (30%, wt%) under continuous magnetic stirring. The concentration of Fe(II), H₂O₂ and Mn(II) were 4 mmol/L, 4.8 mmol/L and 0.2 g/L, respectively. The initial pH of wastewater was adjusted to 3.0 by the addition of HCl. All these parameters were optimized in our former research (Shi et al. 2017). Oxidation reaction was maintained for 50 min, then excess NaOH was added into the solution to raise the pH and to quench the reaction. The wastewater sample was withdrawn for further analysis, and all experiments were performed in triplicate.

Effects of operating conditions on papermaking wastewater degradation by Mn(II) enhanced Fenton reaction

The pH and concentration of MnSO₄ were selected as the monitoring parameters for the treatment efficiency in this study. 0.2–0.8 g/L MnSO₄ was added into the solution with the pH range from 3.0 to 7.0. The initial pH of the wastewater was adjusted by the addition of HCl or NaOH. Other parameters were the same as the above method shown in the section, Effects of Mn(II) on papermaking wastewater degradation by oxidation system.

Investigation of the role of Mn(II) in Fenton system

Soluble COD and suspended COD treatment experiments were conducted to investigate the role of Mn(II) in the oxidation and coagulation stages in Fenton system, respectively. Five different systems (MnSO₄ + H₂O₂, Fenton, Fe(II) + MnSO₄) were used for soluble COD treatment. The solution pH was adjusted to 3.0 by HCl solutions. MnSO₄ + H₂O₂ system was further investigated to clarify soluble COD and suspended COD removal efficiencies with the introduction of Mn(II). Then, the Fenton oxidation processes were performed as in the above procedures. More detailed information can be found in the supplementary material (available online).

RESULTS AND DISCUSSION

Effects of Mn(II) on papermaking wastewater treatment by oxidation system

The effects of Mn(II) introduction in papermaking wastewater treatment are illustrated in Figure 1, which shows the COD removal of papermaking wastewater in H₂O₂, Mn(II)/H₂O₂, Fenton and Mn(II)/Fenton system. It was clear that the treatment of papermaking wastewater by H₂O₂ oxidation system was enhanced with the presence of Mn(II), from the results. The COD removal efficiencies reached 52%, 67%, and 77% in Mn(II)/H₂O₂, Fenton, and Mn(II)/Fenton systems, respectively. This indicated that the standalone H₂O₂ showed little effect on COD removal whereas Mn(II)/H₂O₂ system presented much better results to some extent. The enhancement might be concerned with the generation of HO• due to the introduction of Mn(II). Significantly, although the COD removal efficiency has been improved in Mn(II)/H₂O₂ system, it is still lower than the conventional Fenton process, which means that Fe(II) in

![Figure 1](https://iwaponline.com/wst/article-pdf/77/10/2509/235050/wst077102509.pdf)
Fenton system cannot be substituted by Mn(II) in terms of obtaining high COD removal efficiency in Fenton system.

Generally, COD removal efficiency in Mn(II)/Fenton system was remarkably enhanced compared with that in Fenton system alone. Some studies showed that the catalytic activity of Fe(II) was enhanced by Mn(II) introduction in Fenton reactions (Liang et al. 2014). The manganese ion may participate in the chain reaction of radicals in Fenton system by reacting with HO· or HO₂⁻/O₂, and the valence of Mn could be changed in this process, resulting in the decreased consumption of HO· by Fe(II) and other active species. Therefore, the effectivity of HO· would then be improved and COD removal could ultimately be strongly enhanced in Mn(II)/Fenton system. Similarly, some other research has reported the same results. The Mn-incorporated samples displayed enhanced efficiency in HO· production for the degradation of acid orange II and the discoloration of methylene blue (Carvalho et al. 2014; Liang et al. 2014).

The kinetics of COD removal in Fenton and Mn(II)/Fenton system are studied in Figure 2. The pseudo-first order kinetic equation (Equation (S7), available with the online version of this paper) is used for fitting the degradation data, and R² of the two fitting lines are 0.9637 and 0.9448 in Fenton and Mn(II)/Fenton system, respectively. The intercept and slope of the fitting line in Fenton system are 1.0520 ± 0.0845 and 0.0028 ± 0.0056, while the intercept and slope are 1.5197 ± 0.1185 and 0.0059 ± 0.0078 for Fenton + MnSO₄ treatment. The slope of the lines yielded the reaction rate constant of 0.0059 min⁻¹ and 0.0028 min⁻¹, which showed that the pseudo-first order reaction rate constant of Mn(II)/Fenton system was 2.11 times higher than that of Fenton system. The treatment efficiency of papermaking wastewater in Fenton system was improved obviously when Mn(II) was added. In Fenton system, the oxidation rate is limited by the slow formation of Fe(II) through Equation (2) \(k_2 = 2 \times 10^{-3} \text{ M}^{-1} \text{ s}^{-1} \). In the Mn(II)/Fenton system, the increment in reaction rate may be attributed to the prompt reduction of Fe(III) to Fe(II) with the help of Mn(II), boosting the catalytic reaction of H₂O₂ by Equation (1). As a result, the treatment of papermaking wastewater was enhanced.

Effects of operating conditions on papermaking wastewater treatment by Mn(II) enhanced Fenton reaction

Effect of Mn(II) concentration

The effects of Mn(II) concentration on Fenton system are illustrated in Figure 3 and the results show that 0.2 g/L MnSO₄ exhibited obvious enhancement on COD removal for papermaking wastewater in Fenton system. COD removal efficiency increased significantly with rising Mn(II) concentration, ranging from 67% to 81% with Mn(II) concentrations from 0 g/L to 0.8 g/L. Similarly, Li et al. (2016) studied the removal of bisphenol A (BPA) in water using a microwave-enhanced Mn-Fenton method. They found that with an increasing concentration of Mn(II) ions, BPA removal rate was higher than that without any Mn(II) ions. BPA could be completely degraded when
the concentration of Mn(II) exceeded 2.7 mg/L, which showed the highly effective utilization of \(\cdot \)OH. In general, a high Fe(II) concentration is unlikely to correspond to high oxidation removal in Fe(II)/H\(_2\)O\(_2\) system. Instead, the degradation rate decreases as Fe(II) concentration continuously increases beyond a suitable level, because a high Fe(II) concentration can cause a self-scavenging effect of HO\(_2\) \(^\text{(Equation (3))}\) and induce a decrease in degradation rate of pollutants (Neyens & Baeyens 2003). Thus, it should be noted that Mn(II) could enhance the effectiveness of Fenton process in its application.

Effects of initial pH

The effect of pH on COD removal efficiency is shown in Figure 4. During the reaction, the pH value was slightly decreased and the solution became acidic after the Fenton process. The maximal removal efficiency of COD (82%) was achieved at pH of 4. In other studies, the optimum pH ranges from 2.0 to 4.0 in Fenton system (Han et al. 2012). By contrast, pH made no remarkable difference on COD removal by Fenton system in the presence of Mn(II) from Figure 4. To some extent, this mechanism broadened the application of Fenton technology to treat papermaking wastewater in a wider pH range. In general, huge quantities of acidic substances are needed as pH adjustments in Fenton system to maintain the optimal pH of 3. This result was significant for the treatment of papermaking wastewater, as it is not necessary to lower the pH of the system, thus eliminating the need for extra expenses. At the end of the reactions, pH values were 2.90, 2.91, 2.94, 3.34 and 3.70, respectively. The decreased pH might be concerned with the Equations (2) and (4) mentioned above.

Investigation of the role of Mn(II) in Fenton system

Effect of Mn(II) on enhancing \(\cdot \)HO generation in Fenton system

To get a clear perspective of the role of Mn(II) in Fenton system, the papermaking wastewater was pretreated by filtration to remove the suspended COD in solution. Five different systems were used to treat soluble COD wastewater. No floc and precipitation were observed in these experiments, which could be considered as the organic compounds being mainly removed by the oxidation stage in Fenton system. As shown in Figure 5, the soluble COD removal efficiency by Fenton system was enhanced in the presence of Mn(II), and increased by 19% compared with that of a separate Fenton system. However, no evident removal of soluble COD could be observed when the system only contained Mn(II) and H\(_2\)O\(_2\) without the participation of Fe(II). This result could be explained by the different catalytic abilities presented by Mn(II) and Fe(II). Soluble Mn(II) could catalyze H\(_2\)O\(_2\) decomposition in a suitable condition; however, the catalytic reaction happened at a very slow rate (Richard et al. 2005). Anipsitakis & Dionysiou (2004) also found that iron is the most efficient transition metal to catalyze H\(_2\)O\(_2\) to generate HO\(_2\), whereas the manganese ion is very inert. The role of Mn(II) in Fenton system...
system is probably associated with the oxidation process, in which HO· production might be enhanced.

HPLC with fluorescence detection was performed to detect HO· generation in Fenton reaction in the presence of Mn(II). Fluorescence increment (ΔF) was presented as the parameter indicating HO· generation under various Mn(II) concentrations. From Figure 6, it is found that the generation of HO· was evidently promoted by Mn(II), and similar results have been reported in other studies. Fernsebner et al. (2014) made use of the ion chromatography coupled to inductively coupled plasma-optical emission spectrometry (IC-ICP-OES) analysis of brain samples to show that Mn(II) may trigger a shift of the Fe(II)/Fe(III) ratio to generate more Fe(II) in different oxidation reactions, such as Fenton reaction. The resulting O2·− further reduced Fe(III) to produce more Fe(II) through Equation (4). Then the formation of HO· was enhanced, thereby consequently accelerating the oxidation of pollutants. Besides, lower HO· generation was obtained under a higher Mn(II) concentration. The reason might be that the amount of H2O2 reacting with the redundant Mn(II) ion was inadequate to generate OH−. Nevertheless, the HO· production was still higher than the absence of Mn(II) in Fenton system.

Effect of Mn(II) on coagulation process in Fenton system

To further know the role of Mn(II) in Fenton system, soluble COD and suspended COD removal efficiencies by Mn(II)/H2O2 system are analyzed in Figure 7. Results showed that suspended COD decreased evidently, whereas soluble COD remained unchanged after the reaction in Mn(II)/H2O2 system. Meantime, many flocs were generated in raw papermaking wastewater. This result indicated that suspended substances precipitated in papermaking wastewater, and then a large amount of COD was removed through the coagulation process. The mechanism of the coagulation might be explained by the formation of MnMnO3 through Equations (7)–(9). The surface area of the obtained precipitate from N2 adsorption/desorption isotherms was 146.9 m²/g, which presented a good characteristic for COD removal by coagulation process.

$$\text{2MnSO}_4 + 4\text{NaOH} \rightarrow 2\text{Mn(OH)}_2 \downarrow + 2\text{Na}_2\text{SO}_4$$ \hspace{1cm} (7)

$$\text{2Mn(OH)}_2 + \text{O}_2 \rightarrow 2\text{H}_2\text{MnO}_3 \downarrow$$ \hspace{1cm} (8)

$$\text{H}_2\text{MnO}_3 + \text{Mn(OH)}_2 \rightarrow \text{MnMnO}_3 \downarrow + 2\text{H}_2\text{O}$$ \hspace{1cm} (9)

Mechanism of Mn(II) enhanced Fenton reaction

Based on the above results, the mechanism of the enhanced treatment of organic substances in Fenton system in the presence of Mn(II) was proposed. As shown in Figure 8,
Mn(II) participated in the oxidation and coagulation stages of Fenton system. Firstly, the manganese ion may participate in the chain reaction in the oxidation stage to generate HO₂⁻/O₂⁻, which reduced Fe(III) back to Fe(II) through Equation (4). The formation of Fe(II) and HO• were then accelerated, thereby increasing the oxidation of organic substances. Jacobsen et al. (1998) investigated the reactions of Mn(II) with HO• and HO₂⁻/O₂⁻ in detail as shown by Equations (10)–(12).

\[
\begin{align*}
\text{Mn}^{2+} + \text{HO•} & \rightarrow \text{Mn}^{3+} + \text{OH}^- & k_{10} = 2.0 \times 10^7 \text{M}^{-1} \text{s}^{-1} \\
\text{Mn}^{3+} + \text{H}_2\text{O}_2 & \rightarrow \text{MnO}_2^- + 2\text{H}^+ & k_{11} = 2.8 \times 10^5 \text{M}^{-1} \text{s}^{-1} \\
\text{MnO}_2^- + \text{H}^+ & \rightarrow \text{Mn}^{2+} + \text{HO}_2^-/\text{O}_2^- & k_{12} = 6.5 \times 10^6 \text{M}^{-1} \text{s}^{-1}
\end{align*}
\]

Secondly, after the pH was adjusted, Fe(III) and Mn(II) could form insoluble ferric hydroxy complexes (Equations (13) and (14)) and MnMnO₃ (Equations (7)–(9)) to produce a floculent precipitate, which facilitated the separation of suspended substances in effluent in the coagulation stage (Neyens & Baeyens 2003). These complexes generated in the reactions accounted for the coagulation capability of Fenton’s reagent.

\[
\begin{align*}
\text{[Fe(H}_2\text{O})_6\text{]}^{3+} + \text{H}_2\text{O} & \rightarrow \text{[Fe(H}_2\text{O})_3\text{OH]}^{2+} + \text{H}_3\text{O}^+ & (13) \\
\text{[Fe(H}_2\text{O})_3\text{OH]}^{2+} + \text{H}_2\text{O} & \rightarrow \text{[Fe(H}_2\text{O})_4\text{(OH)}_2] + \text{H}_3\text{O}^+ & (14)
\end{align*}
\]

CONCLUSIONS

In this study, the treatment of papermaking wastewater by Fenton system was enhanced in the presence of manganese (MnSO₄). The COD removal efficiency of papermaking wastewater was increased with the rising concentration of MnSO₄. Soluble COD removal reached 61% at an H₂O₂ concentration of 4.8 mmol/L, [H₂O₂]/[Fe²⁺] molar ratio of 1.2, and MnSO₄ concentration of 0.2 g/L, which were increased by 19% compared with that of the Fenton system alone. COD removal efficiency was also enhanced in a wider pH range (3–7), which indicated the operation parameters of Fenton technology could be broadened to a milder condition.

Based on soluble COD and suspended COD treatment experiments, the possible mechanism of the enhanced removal of organic substances in Fenton system in the presence of Mn(II) was proposed. Mn(II) participated in the oxidation and coagulation stages in Fenton system. In the oxidation stage, Mn(II) promotes the production of HO₂⁻/O₂⁻, then HO₂⁻/O₂⁻ reacts with Fe(III) to accelerate the formation of Fe(II), and finally accelerates the production of HO•. Meantime MnMnO₃ and Fe(OH)₃ formed in the coagulation stage facilitated the removal of suspended substances and a large amount of COD, which enhanced the overall COD removal of papermaking wastewater. This study helped to elucidate the treatment of papermaking wastewater by Fenton system in the presence of Mn(II) and provided a detailed mechanism to improve practical applications of Fenton technology.

ACKNOWLEDGEMENTS

The work was supported by a grant from National Science and Technology Major Project Water Pollution Control and Treatment (No. 2012ZX07203-004-44).

REFERENCES

Fernsebner, K., Zorn, J., Kanawati, B., Walker, A. & Michalke, B. 2014 Manganese leads to an increase in markers of oxidative stress as well as to a shift in the ratio of Fe(II)/(III) in rat brain tissue. Metallochem. 6 (4), 921–931.

