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A cost-effective IoT strategy for remote deployment

of soft sensors – a case study on implementing a soft

sensor in a multistage MBBR plant

A. M. Nair , A. Hykkerud and H. Ratnaweera
ABSTRACT
Model-based soft sensors can enhance online monitoring in wastewater treatment processes. These

soft sensor scripts are executed either locally on a programmable logic controller (PLC) or remotely on

a system with data-access over the internet. This work presents a cost-effective, flexible, open source

IoT solution for remote deployment of a soft sensing algorithm. The system uses low-priced hardware

and open-source programming language to set up the communication and remote-access system.

Advantages of the new IoT architecture are demonstrated through a case study for remote

deployment of an Extended Kalman Filter (EKF) to estimate additional water quality parameters in a

multistage moving bed biofilm reactor (MBBR) plant. The soft-sensor results are successfully validated

against standardised laboratory measurements to prove their ability to provide real-time estimations.
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INTRODUCTION
The rise of digital water, driven by a rapid increase in infor-
mation technology, has created an impetus to develop
smarter and more efficient monitoring tools in wastewater

treatment plants. Soft sensors have gained importance as a
viable alternative to expensive online sensors (Olsson
et al. ; Wang et al. ). Soft sensors are computer

codes, which use a process model together with available
online measurements from treatment plants to estimate
additional wastewater quality parameters (Haimi et al.
). These soft sensor scripts are executed in a programma-

ble logic controller (PLC), which has access to real-time data
from the online sensors. Soft-sensors can also be
implemented in a remote device if the plant’s supervisory

control and data acquisition (SCADA) has remote monitor-
ing capabilities.

Most commercial SCADA vendors use proprietary soft-

ware for programming their PLCs. Therefore, implementing
the soft sensor in a PLC requires the code to be written in its
proprietary programming suite, which limits the possibility
of running soft sensor scripts written in commonly used

scientific/academic programming languages such as
Matlab or Python in industrial PLCs. The alternative is
to develop a communication layer interface between a

client (with the soft sensor script) and a server that has
access to data from the online sensors. Open Platform Com-
munication (OPC) has recently emerged as a global
standard for communication between various sensors,

PLCs and SCADA providers (González et al. ). Most
SCADA vendors provide OPC servers with remote access
options. These remote services do, however, come at an

additional cost.
This work discusses an alternative, cost-effective IoT

strategy, which provides flexible and secure remote access
to the PLC. The new IoT architecture is implemented at a

multistage moving bed biofilm reactor (MBBR) pilot plant
to access the data from the online sensors remotely.
Access to real-time data from the pilot enables remote

deployment of an Extended Kalman Filter (EKF) to estimate
additional water quality parameters in the plant.
MATERIAL AND METHODS

Pilot plant schematic and monitoring station

Figure 1 presents the operational schematic and monitoring

station of a multistage MBBR pilot plant for municipal
wastewater treatment (Saltnes et al. ). The reactor has
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Figure 1 | Process flow diagram and sensor network in the pilot plant.

1734 A. M. Nair et al. | A cost-effective IoT strategy for remote deployment of soft sensors Water Science & Technology | 81.8 | 2020

Downloaded fr
by guest
on 26 Septemb
four anaerobic chambers, followed by six aerobic chambers.
The plant is retrofitted with dissolved oxygen sensors from

chamber 5 to 10 and an ammonia sensor in the effluent
line. All online sensors are connected to a PLC provided
by Beijer Electronics (https://www.beijerelectronics.no/).

The current monitoring system is enhanced by deploying
an array of soft sensors for monitoring additional water qual-
ity parameters. The aim of the soft-sensor array is to estimate
the ammonia concentration in the influent raw wastewater

as well as in each stage of the pilot plant. The soft sensor
also provides estimates on additional parameters (such as
the biomass activity of the nitrifiers) that cannot be

measured directly using a physical sensor. Real-time data
from soft sensors enable plant operators to adjust carrier
recycle and aeration rate (manually or through control

valves) to achieve optimal operation. The estimation of
ammonia concentration in each aerobic chamber can
enable the possibility of implementing ammonia-based aera-

tion control (Rieger et al. ), which has proven to be a
superior control strategy compared to a constant dissolved
oxygen (DO) setpoint control (Vrečko et al. ).

Mathematical model for the multistage MBBR

Several mathematical models explaining biological nitrifica-
tion are available in the literature. They vary from

comprehensive models (Henze et al. ) used in design
and optimization to simplified reduced-order models
(Julien et al. ; Madyastha et al. ) used for monitoring

and control. In this work, the nitrification kinetics for the
biofilm process mentioned in Stare et al. () are adapted
om http://iwaponline.com/wst/article-pdf/81/8/1733/734669/wst081081733.pdf
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for a multistage MBBR system. Equations (1)–(6) describe
model equations in a discrete state-space form. Influent

NH4-N concentration (SNH,in) and the nitrification rate (r)
are estimated by augmenting them as additional state vari-
ables in the model.

xkþ1 ¼ xk þ Tsf(x, u) (1)

x ¼ [SNH,1 SNH,2 SNH,3 SNH,4 SNH,5 SNH,6 SNH,7 SNH,8 SNH,9

SNH,10 SNH,in r]

(2)

u ¼ 0 0 0 0 SO,5 SO,6 SO,7 SO,8 SO,9 SO,10½ �
(3)

y ¼ SNH,10 (4)

fi ¼
τ�1(SNH,in � SNH,1)� ρi, i ¼ 1
τ�1 (SNH,i�1 � SNH,i)� ρi, 1 � i � 10
0, 11 � i � 12

8<
: (5)

ρi ¼
0, i � 4

r� SNH,i

KNH þ SNH,i
� 1
1þ e�K1S0,iþK2

, i � 5

8<
: (6)

TS is the sampling rate, k is the time subscript, and τ is
the residence time in each chamber. The term (SNH,i) rep-

resents the ammonia concentration and (So,i) represents
the dissolved oxygen concentration in the ith chamber. The
model-predicted value of the ammonia concentration in

the effluent is denoted as y. The values of kinetic parameters
K1, K2 and KNH are taken from Stare et al. ().

https://www.beijerelectronics.no/
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Soft-sensor algorithm

The EKF is a widely used soft sensor algorithm for non-
linear systems. Several examples for successful implemen-

tation of model-based soft sensors in biological wastewater
treatment process using EKF can be found in the literature
(Sotomayor et al. ; Busch et al. ; Zeng et al. ).
The basic equations in an EKF are presented in Equations

(7)–(13).

Fk ¼ I þ Ts
@f
@x

����
xk, uk

(7)

x�kþ1 ¼ xk þ Tsf(xk, uk) (8)

P�
kþ1 ¼ Fk�1PkF

T
k þQ (9)

Hk ¼ @h
@x

����
x�
kþ1

,uk

(10)
Figure 2 | IoT schematic option 1 (OPC) and option 2 (MySQL).
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Kk ¼ P�
kþ1H

T
k (HkP

�
kþ1H

T
k þ R)�1 (11)

xkþ1 ¼ x�kþ1 þ Kk(zk � h(x�kþ1)) (12)

Pkþ1 ¼ (I � KkHk) P
�
kþ1 (13)

In the equations above, xk is the state vector and zk is the
measurement vector at a time instance k. The process and
measurement noise covariance matrices are represented as

Q and R respectively. I is the identity matrix, x�kþ1 is the a
priori estimate of the state, P�

kþ1 the covariance of a priori
estimation error and Pk the covariance matrix of the a pos-
teriori estimation error. The sequential order of executing

the EKF equations is presented as a flowchart in Figure 3(b).
Before implementing the soft-sensor in the pilot plant, the

mathematical model (Equations (1)–(6)) and the EKF

(Equations (7)–(13)) were implemented on a simulator plat-
form to assess the system observability and identify the
minimum number of online sensors required to estimate the

ammonia concentration in each chamber. The simulator-
based testing strategy implemented in Nair et al. () was



Figure 3 | (a) Data flow during remote deployment of EKF; (b) flowchart for EKF implementation.
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used to assess the performance of EKF. The values of the
tuning parameters of EKF; Q, R, P0 x0 are obtained using
the tuning methods described in Haugen et al. ().
IoT schemes and soft sensor deployment

Figure 2 presents two possible schematics for remote deploy-
ment of the soft sensor code. Option 1 presents the default

system provided by the SCADA vendor, which consists of
an OPC server accessible through a secure VPN connection.
The EKF is written as a script in Matlab and is executed

remotely on a PC. The OPC Client toolbox in Matlab is
used to receive real-time sensor data from the OPC servers.
The second option includes an IoT gateway, which forms an

interface between the PLC and a remote MySQL server,
which is made accessible using Dynamic DNS (DDNS).
The soft sensor algorithm is written as a Python script,
which is then deployed on a single board computer – Rasp-

berry Pi (https://www.raspberrypi.org/).
The network architecture for the remote deployment of

the soft sensor is presented in Figure 3(a). The IoT gateway

at the pilot plant collects data from online sensors and
inserts them as a new row in a table created in the remote
om http://iwaponline.com/wst/article-pdf/81/8/1733/734669/wst081081733.pdf

er 2021
MySQL server. The client running the EKF code (in the
Raspberry Pi) begins the cycle by reading the last row of
the table. This table consists of the estimated states xk, the
covariance matrix of estimation error Pk, measurements
from online sensor zk and uk. The EKF algorithm then cal-
culates new values of the estimated state xkþ1 and

covariance matrix of estimation error Pkþ1. The updated
values are inserted as a new row in the MySQL table. The
Python script for implementing an EKF on a non-linear

state-space model, the communication code that enables
read and write of data from the remote SQL database, and
the associated configuration files are provided in the Sup-
plementary Material. The code has a modular structure

and can be easily adapted to a new system by anyone with
basic knowledge of programming in Python.
RESULTS AND DISCUSSION

Soft-sensor validation

The estimation results for a period of 1 month (28th January
2019–12th March 2019) are presented in the following

https://www.raspberrypi.org/
https://www.raspberrypi.org/


Figure 4 | Soft sensor results for a duration of 1 month. EKF vs. laboratory measurements.
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figures. Figure 4 shows the comparison between the influent
NH4-N concentration estimated by soft sensor and the
biweekly measurements obtained by standardized labora-

tory tests (Hach-Lange kits). The R2 values presented in
the graph show that the values predicted by the estimator
are close to the ammonia measurements from the labora-
tory. This demonstrates the effectiveness of soft sensors in

providing real-time values of influent NH4-N concentration.
The estimation results for NH4-N concentrations at var-

ious stages in the pilot plant are presented in Figure 5. The

time span for ammonia concentration in the individual
chamber is shortened to one week for better visualisation
of data.

Figure 6 presents the value of the nitrification rate r esti-
mated by the soft sensor. A simplified nitrification model,
such as the one used in this work, is derived from the com-

prehensive activated sludge model by considering certain
assumptions. One such assumption involves excluding the
kinetics of biomass growth and death and considering a
Figure 5 | Soft sensing results for NH4-N concentration in anaerobic chamber (top) and aerob

://iwaponline.com/wst/article-pdf/81/8/1733/734669/wst081081733.pdf
constant biomass concentration (Julien et al. ). How-
ever, a time-varying estimate of the nitrification rate in the
pilot could be a result of variations in biomass activity.

Therefore, the real-time estimation of the time-varying par-
ameter r could provide significant insight on variations in
the concentration of active nitrifiers in the pilot plant. A
qualitative assessment of the trends (presented in Figure 6)

indicates a positive correlation between the nitrification
rate and the ammonia concentration of influent wastewater.
The nitrification rate (r) showed a steady decline on Febru-

ary 13th, a few hours after the influent ammonia
concentration dropped. The pilot plant showed a lower nitri-
fication rate from February 15th until March 6th, when the

influent ammonia concentration was low. The nitrification
rate started to increase after March 6th, when the influent
ammonia concentration started to rise. This observation cor-

responds to the usual behavior of nitrifiers present in a
biological wastewater treatment plant. However, a detailed
analysis of the estimated results and cross-validation against
ic chamber (bottom).



Figure 6 | Soft sensing results for nitrification rate.
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laboratory measurements should be performed to substanti-
ate the claim and fine-tune the estimator for soft sensing the

concentration of autotrophs in the pilot plant.

Cost comparison

A cost comparison between the default option provided by
the SCADA vendor (Option 1) and two different versions
(Option 2 and Option 3) of the new IoT system is presented

in Table 1. Table 1 also presents the cost incurred while
using a physical ammonia sensor (ion selective electrode)
for measuring ammonia concentration in all six aerobic
chambers. It can be inferred from the overall cost that

using a soft-sensor can result in significant savings.
Among the options for soft-sensors, the default option pro-

vided by the SCADA provider has an average cost of about

1,580 € compared to the new system, which costs about
155 € (with SSL certificates). There is the possibility of run-
ning the setup without SSL, which would bring the cost

down to 35 €, but this is not recommended due to security
concerns (Buchanan et al. ). Recently there are providers
Table 1 | Cost comparison between option 1 (default) and options 2 and 3 (alternative IoT stra

Option 1 Option 2

Service Cost (€) Service

Server OPC (Codesys) 160 MySQL

Remote access VPN (Insys) 560 DDNS

Security/encryption Inbuilt – SSL key

Client hardware PC 200–1,000 Raspberry

Client software Matlab 220 Python

Client software Matlab 220 Python

NH4-N sensor (ISE) 1 unit 1,500 1 Unit

IoT cost 980–1,940

Overall cost 2,480–3,440

om http://iwaponline.com/wst/article-pdf/81/8/1733/734669/wst081081733.pdf
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that supply free SSL certificates (Aertsen et al. ), but with a
slightly lower security level than the commercial options due

to limited support. This could be a valid option for security if
the system is not critical and other operational security
measures like limited access control levels and network moni-

toring are taken into consideration. For more critical water
infrastructure, additional layers of security can be added to
the communication network by providing a VPN or an inter-
mediate API link. The open source VPN software OpenVPN

is relatively easy to implement, but API links require signifi-
cant design considerations and can become inflexible. The
new system discussed in this work provides a cost-effective

option where the only investment is in the hardware (Rasp-
berry Pi) and the cost associated with the purchase of
commercial services for establishing a secure data connection.
CONCLUSIONS

This work illustrates a functioning example of a cost-effec-
tive and flexible alternative for non-intrusive remote
tegy) option 4 (physical sensor)

Option 3 Option 4

Cost (€) Service Cost (€) Service Cost (€)

– MySQL – –

– DDNS – –

120 – –

Pi 35 Raspberry Pi 35 –

– Python – –

– Python – –

1,500 1 Unit 1,500 6 Units 1,500

155 35 0

1,655 1,535 9,000
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monitoring in a wastewater treatment plant. The soft-sensor

array deployed in the pilot plant proves the ability to bolster
the monitoring system in a treatment process. The ability to
monitor additional wastewater treatment parameters that

are otherwise difficult to monitor via conventional online
sensors would enable the implementation of multi-
parameter based optimal control strategies. The case study
presented in this work also illustrates the possibility of inte-

grating scripts written in commonly used scientific
programming languages such as Matlab or Python into
any commercial SCADA. The cost comparison between

the new IoT system and the options available in the
market today shows that remote deployment of soft sensors
can be achieved at much lower costs. This novel cost-effec-

tive option also opens up new possibilities to develop
more comprehensive soft-sensing algorithms for estimating
water quality parameters, which are otherwise difficult to
monitor by a physical sensor.
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