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ABSTRACT

The biological treatment process (BTP) is responsible for removing chemical oxygen demand (COD) and ammonia using microorganisms pre-

sent in wastewater. The BTP consumes large quantities of energy due to the transfer of oxygen using air pumps/blowers. Energy

consumption in the BTP is due to low solubility of oxygen, which results in low aeration efficiency (AE). The aim of the study was to develop

an AE model that can be used to monitor the performance of the BTP. Multilayer perceptron artificial neural network (MLP ANN) algorithm

was used to model AE in the BTP. The performance of the AE model was evaluated using R2, mean square error (MSE), and root mean square

error (RMSE). Sensitivity analysis was performed on the AE model to determine variables that drive AE. The results of the study showed that

MLP ANN algorithm was able to model AE. R2, MSE, and RMSE results were 0.939, 0.0025, and 0.05, respectively, during testing phase. Sen-

sitivity analysis results showed that temperature (34.6%), COD (21%), airflow rate (19.1%), and OTR/KLa (15.7%) drive AE. At high

temperatures, the viscosity of wastewater is low which enables oxygen to penetrate the wastewater, resulting in high AE. The AE model

can be used to predict the performance of the BTP, which will assist in minimizing energy consumption.
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HIGHLIGHTS

• Aeration efficiency increases with an increase in temperature.

• Aeration efficiency decreases with an increase in airflow rate.

• Temperature and airflow rate are the biggest driver of energy consumption.

• Temperature, COD, and airflow rate control aeration efficiency in the biological treatment process.

• High temperatures and airflow rates improve volumetric mass transfer coefficient.
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GRAPHICAL ABSTRACT
1. INTRODUCTION

Wastewater treatment plants (WWTPs) are used all over the world including South Africa (SA). WWTPs are responsible for
purifying domestic and industrial wastewater to an acceptable effluent quality before being discharged into the environment
(Żyłka et al. 2021). The biological treatment process is responsible for decomposing organic matter and oxidising inorganic

matter using microorganisms present in wastewater (Kanaujiya et al. 2019). The biological treatment process consumes large
quantities of energy due to the transfer of oxygen using air pumps/blowers for respiration and survival of microorganisms
(Wang et al. 2016; Christoforidou et al. 2020; Siatou et al. 2020). For example, Wang et al. (2016) reported that the biological

energy consumption in Germany, United States of America (USA), and SA were 0.296 kWh/m³, 0.37 kWh/m³, and
0.3–0.61 kWh/m³, respectively. The energy consumption reported in SA, USA, and Germany accounts for 0.55%, 0.6%,
and 0.7%, of the annual electricity consumption in their respective countries. In Spain and Saudi Arabia, biological treatment

processes consume 0.8 kWh/m³ and 1.6 kWh/m³, respectively (Christoforidou et al. 2020). This energy consumption is high
and requires attention in order to achieve low energy consumption.

The high energy consumption in the biological treatment process is due to the fact that oxygen is partially soluble in waste-
water, which leads to low aeration efficiency (AE) (Lewis &Whitman 1924). This means that the biological treatment process

will not be supplied with sufficient oxygen for respiration of microorganisms due to the resistance of wastewater in transfer-
ring oxygen. The low solubility of oxygen in the biological treatment process is caused by the gas liquid film that prevents a gas
from dissolving in a liquid as defined by the two film theory (Lewis & Whitman 1924). The viscosity of the wastewater pro-

vides the resistance to the passage of oxygen molecules in the biological treatment process, which forces plant managers/
operators to aerate 24 h nonstop in order to maintain a high oxygen transfer rate/volumetric mass transfer coefficient
(OTR/KLa) (Rosso & Stenstrom 2006; Garcia-Ochoa & Gomez 2009; Suresh et al. 2009). AE is defined as the ratio of
://iwaponline.com/wst/article-pdf/86/11/2912/1149650/wst086112912.pdf
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OTR/KLa and the power consumed during the aeration process. AE can be defined by Equation (1).

AE ¼ OTR=KLa
P

(1)

In order to achieve a high AE, high OTR/KLa must be maintained so that oxygen is supplied in the biological treatment
process efficiently. To achieve high OTR/KLa, research scholars have resorted to high airflow rates in order to penetrate

the thickness of the wastewater caused by impurities that provide the resistance of oxygen molecules to dissolve in wastewater
(Vogelaar et al. 2000; Limpaiboon 2013; Shukla & Goel 2018; Zhou et al. 2018; Warunyuwong & Imai 2020). Utilizing high
airflow rates will increase the air velocity distribution which increases the shear force in the biological treatment process. An

increase in the shear force will breakdown the thickness of the wastewater making it possible for oxygen molecules to pene-
trate and dissolve (Ren et al. 2018). According to Zhou et al. (2018), an airflow rate of 0.5 vvm (volume of air per volume of
liquid per minute) produced 13.21 kg O2/h OTR/KLa, while an airflow rate of 2 vvm produced 22.43 kg O2/h OTR/KLa. Simi-

larly, Vogelaar et al. (2000) reported that an airflow rate of 0.15 vvm produced 22 kg O2/h OTR/KLa, while an airflow rate of
0.56 vvm produced 61 kg O2/h OTR/KLa. It is clear from the literature that high airflow rates will result in high OTR/KLa.
The challenge with increasing airflow rate to obtain high OTR/KLa is that power consumption also increases, resulting in a
low AE (Baylar & Bagatur 2000; Pittoors et al. 2014; Al Ba’ba’a & Amano 2017; Collivignarelli et al. 2019; Du et al. 2020;
Kan et al. 2020). According to Collivignarelli et al. (2019), an airflow rate of 100 m³/h produced 0.98 kg O2/kWh AE, while
an airflow rate of 150 m³/h produced 0.85 kg O2/kWh AE. This is a decrease of 13.3% in AE due to an increase of 33.3% in
airflow rate. Similarly, Al Ba’ba’a & Amano (2017) reported that an airflow rate of 0.125 L/min produced 2.8 kg O2/kWh AE,

while an airflow rate of 0.05 L/min produced 5.2 kg O2/kWh AE. This was a decrease of 46.2% in AE due to an increase of
60% in airflow rate. Although high airflow rates improve OTR/KLa, they do not benefit AE in the biological treatment process
because when high airflow rates are applied, high power consumption are utilized by the air pump/blower. This will result in

high energy consumption.
High temperatures, on the other hand, have been reported to improve OTR/KLa, which results in an improvement of AE

(Krahe et al. 1996; Vogelaar et al. 2000; Chalasani & Sun 2007; Yang & Park 2012; Pappenreiter et al. 2019). This is because
at high temperatures, the viscosity of the wastewater decreases, which reduces the thickness of the wastewater and allows
oxygen molecules to penetrate and dissolve more rapidly, resulting in high AE (Lewis & Whitman 1924). According to
Vogelaar et al. (2000), a temperature of 20 °C produced OTR/KLa of 17.4 kg O2 h� 1, and a temperature of 55 °C produced
OTR/KLa of 37.4 kg O2 h� 1. This is an increase of 53.5% in OTR/KLa due to an increase of 63.6% in temperature. Similarly,

Yang & Park (2012) reported that a temperature of 13 °C produced OTR/KLa of 7 kg O2/h while a temperature of 23.5 °C
produced OTR/KLa of 7.8 kg O2/h. This was an increase of 10.3% in OTR/KLa due to an increase of 44.7% in temperature.
Therrien et al. (2019) reported that a temperature of 10 °C produced OTR/KLa of 0.0324 kg O2/h, and a temperature of 30 °C

produced OTR/KLa of 0.0376 kg O2/h. This was a 13.8% gain in OTR/KLa due to a 66.7% increase in temperature. The
increase of OTR/KLa due to an increase in temperature will result in an increase of AE because no power consumption
was increased. An increase in AE will lead to a reducing in energy consumption in the biological treatment process, because

low airflow rates can be utilized with high temperatures to achieve a high OTR/KLa delivery. The challenge is that the normal
operating temperature of wastewater is usually in the range between 18 °C and 22.5 °C (Golzar et al. 2020; Tejaswini et al.
2020). This low temperature of wastewater will result in a low OTR/KLa, which will result in low AE due to high viscosity
of the wastewater. Therefore, it is essential to develop a model that can be used to monitor AE in order to achieve low energy

consumption in the biological treatment process. The aim of this study was to develop an AE model that can be used to moni-
tor the performance of the biological treatment process. The model will incorporate the effects of temperature variations and
airflow rate variations since they drive the efficiency of the biological treatment process. This will assist plant managers/oper-

ators in achieving high AE while utilizing low airflow rates that reduce energy consumption in the biological treatment
process.

2. MATERIALS AND METHODS

2.1. Laboratory experiments

Laboratory experiments were carried out at the Tshwane University of Technology, Faculty of Engineering and the Built
Environment, Department of Civil Engineering to determine the optimum operating temperature and airflow rate that
om http://iwaponline.com/wst/article-pdf/86/11/2912/1149650/wst086112912.pdf
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improves AE. The airflow rates used were 5 L/min, 10 L/min, 15 L/min, 20 L/min, 25 L/min, and 30 L/min. The airflow rate

range was chosen based on the fact that low airflow rate produces low OTR/KLa compared with high airflow rates. The low
OTR/KLa will result in a low AE, whereas high OTR/KLa will result in high AE in the biological treatment process. The temp-
eratures used were 15 °C, 17.5 °C, 20 °C, 22.5 °C, 25 °C, 27.5 °C, 30 °C, 32.5, and 35 °C. The temperature range was chosen

based on the fact that low temperature result in high viscosity compared with high temperature. The low temperature will
result in low AE, whereas high temperature will increase the AE in the biological treatment process. The biological treatment
process comprised of the following components: aeration tank, dissolved oxygen (DO) meter and probe, thermostat, air
pump, airflow meter, air stone disc bubble diffuser, and a digital wattmeter. The components and the schematic diagram

of the biological treatment process are detailed in Table 1 and Figure 1, respectively.

2.2. Wastewater collection

Wastewater samples were collected from the Daspoort WWTP bioreactor number two each day. Two samples were collected,
one in the morning and one in the afternoon. The collection method (morning and afternoon) was implemented to prevent

any biological activity from taking place during the storage process. The APHA (2012) method was used for the collection of
wastewater from the Daspoort WWTP. Non sterile powder free nitrile gloves were used to handle all equipment. A 25 L jerry
can was used to collect the raw wastewater. An additional 2 L of activated sludge was collected from the return activated

sludge. Wastewater samples were collected and aerated within 2 h after collection. After collection, the wastewater was
stored in ice bucket at a temperature of 4 °C to make sure that no biological activities take place during transportation to
the Tshwane University of Technology, Faculty of Engineering and the Built Environment, Department of Civil Engineering.

2.3. Analysis

Chemical oxygen demand (COD) was measured and analysed. The method used for analysing COD was the Standard

Methods for the Examination of Water and Wastewater (APHA 2012). COD was analysed using closed reflux colorimetric
Table 1 | Components of the aeration unit

Components Type Remarks

Aeration tank Circular aeration tank (acrylic material) 10–15 mm thick acrylic material. Dimensions 570� 300 mm.
Total volume is 40 L. Working volume is 30 L

Dissolved oxygen meter
and probe

Hanna HI98196 multi-parameter water
proof meter

Measures DO, pH, and ORP

Thermostat Local manufacturer Controls temperature in the range 0 °C–40 °C

Air pump Waterfall Resun LP100 Can supply air between 0 and 140 L/min

Airflow meter MF5712 200 L/min digital gas air nitrogen
oxygen mass flow meter

Can measure airflow rate between 0 and 200 L/min

Air stone disc bubble
diffuser

Growneer micro pore bubble diffuser Diffuser is 20 cm in diameter

Digital wattmeter Geewiz (kilowatt) Measures power between 0 and 3,600 watts

Figure 1 | Laboratory aeration unit.
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(APHA 2012 method 5220). Spectrophotometer (DR3900), digestion vessels, block heater, microburet, and ampule sealer

were the equipment used for the analysis.

2.4. Aeration process

Aeration process was conducted twice a day (two samples collected). Two wastewater samples were aerated per day and each
sample was aerated for 4 h (hydraulic retention time at Daspoort WWTP). This means that two different temperatures (35 °C
and 32.5 °C) were applied during the aeration process at one of the airflow rates (5 L/min) per day. The same process was

repeated the following day applying two different temperatures (30 °C and 27.5 °C) and the same airflow rate (5 L/min).
The process was then repeated on all temperatures at different airflow rates. A thermostat (Table 1) was used to increase
(heat up) the temperature of wastewater from field temperature (18–22.5 °C) to the desired operating temperature. Ice

cubes were used to decrease (reduce) the temperature of wastewater from field temperature to the desired operating tempera-
ture. Three samples were collected and analysed during each aeration process:

• Initial concentration immediately after collection or before aeration process.

• 2 h concentration.

• 4 h concentration.

2.5. Disposal

After the completion of the aeration process, wastewater was disposed by flushing at the laboratory toilet. The disposal
method allows the wastewater to go back to the WWTP.

2.6. Determination of oxygen uptake rate, oxygen transfer rate/volumetric mass transfer coefficient, and aeration
efficiency

The dynamic method as described by Garcia-Ochoa & Gomez (2009) was used to determine the oxygen uptake rate (OUR)

and OTR/KLa.

2.6.1. Oxygen uptake rate

Five steps were followed to determine OUR (Garcia-Ochoa & Gomez 2009):

i. Step one – the airflow into the aeration unit was turned off for 10 min, which was enough to prevent microorganisms from

being starved of oxygen.
ii. Step two – the decrease in DO concentration was monitored during the non-aeration period using a DO meter and probe.
iii. Step three – the decrease in DO was plotted against time using Microsoft Excel.

iv. Step four – a linear regression line was used to determine the rate of change in DO concentration with time. The rate of
change in DO concentration was regarded as the OUR.

v. Step five – Equation (2) defines the rate of change in DO concentration with time.

dC
dt

¼ �qO2CX (2)

2.6.2. Oxygen transfer rate/volumetric mass transfer coefficient

Seven steps were followed to determine OTR/KLa (Garcia-Ochoa & Gomez 2009).

i. Step one – turn on the air supply in the aeration unit.
ii. Step two – record the DO concentration at different time intervals.
iii. Step three – measure the average DO concentration saturation in the biological aeration unit.

iv. Step four – determine the natural logarithm of the difference between DO concentration at different time intervals and
average DO concentration obtained at infinite time using Equation (3).

ln (C� � C) (3)
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v. Step five – determine the difference between time intervals using Equation (4).

(t2 � t1) (4)

vi. Step six – produce a graph plot of Equations (3) and (4).
vii. Step seven – produce a linear regression line. The slope of the linear regression line is equal to the OTR/KLa.

2.6.3. Aeration efficiency

Three steps were followed to determine AE (Garcia-Ochoa & Gomez 2009).

i. Step one – determine OTR/KLa in the aeration unit. OTR/KLa will be determined as described in section 2.6.2.
ii. Step two – determine the power used during the aeration process. Power input was determined as described in Table 1,

using the digital wattmeter.
iii. Step three – determine the AE. AE was determined by the quotient of OTR/KLa and power input as described in Equation

(1).

2.6.4. Application of artificial neural network

A regression model was developed using multilayer perceptron (MLP) artificial neural network (ANN) algorithm on
MATLAB programming software. Continuous data collected from laboratory experiments was used to develop the AE
model. The MLP ANN architecture is shown in Figure 2.

The general form of the MLP ANN algorithm is shown in Equation (5). Where X is the jth nodal value for the previous
layer. Y is the ith nodal value in the current layer. f is the activation function. Wij is the weighting factor, and b is the bias
Figure 2 | Aeration efficiency MLP ANN architecture.
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of the ith node.

Yi ¼ f
XN
j¼1

WijXj þ bi

0
@

1
A (5)

Nine steps were followed to model AE using MLP ANN algorithm.

• The first step was to select input variables from the data collected during laboratory experiments.

• The second step was to split the data into 70% training, 15% validation, and 15% testing.

• The third step was to transform data into input variables using the normalization technique defined by Equation (6).

x(scaled) ¼ x�minx

maxx �minx
(6)

where x(scaled) is the scaled sample data point, x is the sample data point, minx is the minimum value in the training data-
set, maxx is the maximum value on the training dataset.

• The fourth step was to select the MLP ANN architecture with one hidden layer and four neurons.

• The fifth step was to initialize the weights and bias between values of zero and one.

• The sixth step was to use the sigmoid activation function as a transfer function. The sigmoid function is defined by Equation

(7) and Figure 3.

f ¼ 1
1þ e�x (7)

• The seventh step was to use the supervised gradient descent backpropagation learning algorithm to correct the weights and

bias.

• The eighth step was to evaluate the performance of the AE model using MSE, R2, and RMSE defined by Equations (8)–(10).

MSE ¼
Xn
i¼1

(ŷi � yi)
2

N
(8)
Figure 3 | Sigmoid Function.
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R2 ¼ 1
m

Xm
j¼1

1� SSE
SST

� �
(9)

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

(ŷi � yi)
2

N

vuuut
(10)

where MSE is the mean squared error, ŷi is the predicted data, yi is the observed data, N is the number of data points, R2 is
the coefficient of determination, SSE is the sum of squared error, and SST is the total sum of squares.

• The ninth step was to perform sensitivity analysis on the AE model. A one factor at a time method was used. Each decision

variable was individually adjusted by+ 10%,+ 20%, and+ 50%, while keeping the others unchanged. In addition,
decision variables were checked for their direct, inverse, major, or minor changes on AE.
3. RESULTS AND DISCUSSION

3.1. Laboratory results

Table 2 presents Pearson correlation coefficient analysis results using a two tailed test at 95% significance while
Figure 4(a)–(e) presents the relationship between AE and input parameters (COD, airflow rate, temperature, OUR, and

OTR/KLa). COD (�0.043**) produced a negative correlation relation to AE as shown in Table 2. This was because high con-
centrations of organic matter causes bubble coalescence in the biological treatment process. Bubble coalescence results in
large bubbles that are faster, reducing contact time between air bubbles and wastewater. The less contact time between air

bubbles and wastewater results in low AE, since the oxygen molecules carried by the air bubbles will not be able to penetrate
wastewater thickness caused by high organic matter (Fan et al. 2014; Durán et al. 2016; Odize et al. 2017). Odize et al. (2017)
reported that AE decreased by 0.47% with an increase in colloidal/particulate COD from 5 mg/L to 20 mg/L. Fan et al.
(2014) reported a decrease of 1.744% in AE when the organic content increased from 2.840 g/L to 10.498 g/L in the biologi-
cal activated sludge process. This can also be justified by the relationship between COD and OTR/KLa that produced a
negative correlation of - 0.579**, which indicates that when COD increases, OTR/KLa decreases. The relationship between
AE and COD shown in Figure 4(a) shows high AE at low COD concentration.

Airflow rate (�0.061**) produced a negative correlation relation to AE. At high airflow rates, air bubbles tend to move
faster, resulting in a shorter retention time of air bubbles that contain oxygen in the biological treatment process. The shorter
retention time means that less oxygen molecules will be absorbed in the wastewater, yet high power is being consumed, result-

ing in low AE (Ashley et al. 2008; Al Ba’ba’a et al. 2014; Collivignarelli et al. 2019). According to Ashley et al. (2008), an
airflow rate of 10 L/min produced 270 kg O2/kWh AE, while an airflow rate of 40 L/min produced 180 kg O2/kWh AE. Simi-
larly, Al Ba’ba’a et al. (2014) reported that an airflow rate of 14.4 L/min produced 64.05 kg O2/kWh AE while an airflow rate

of 84 L/min produced 2.94 kg O2/kWh AE. Figure 4(b) shows a similar relationship between AE and airflow rate. This shows
that high airflow rates are not beneficial in the biological treatment process. Temperature (0.575**) produced the highest
Table 2 | Pearson correlation coefficient (2 tailed) between aeration efficiency and the parameters of interest

Correlation

Temperature OUR OTR/KLa COD Airflow rate AE

Temperature Pearson Correlation 1

OUR Pearson Correlation 0.271** 1

OTR/KLa Pearson Correlation 0.305** 0.747** 1

COD Pearson Correlation 0.123** �0.695** �0.579** 1

Airflow rate Pearson Correlation 0.000 0.097** 0.229** 0.008 1

AE Pearson Correlation 0.575** 0.206** 0.542** �0.043** �0.061** 1

**Correlation is significant at the 0.01 level (2-tailed).

*Correlation is significant at the 0.05 level (2-tailed).
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positive correlation relation to AE. This was because temperature controls the viscosity of wastewater, and at high tempera-
tures the viscosity of wastewater is low, which increases the transfer of oxygen molecules in wastewater. When oxygen

transfer is high in wastewater due to low viscosity, AE will increase because less power from air pumps/blowers is required
to achieve high oxygen solubility (Therrien et al. 2019). This can also be justified by the relationship between temperature and
OTR/KLa, which produced a positive correlation of 0.305**. This relationship shows that when the viscosity of wastewater is
low due to high temperatures, oxygen transfer increases due to a thin liquid film that allows for high oxygen transfer. Therrien

et al. (2019) reported that a temperature of 10 °C produced 0.197 kg O2/kWh AE and a temperature of 30 °C produced
0.222 kg O2/kWh AE. This resulted in a 11.3% increase due to an increase in temperature of wastewater. The relationship
between AE and temperature can be observed in Figure 4(c).

OUR (0.206**) produced the third highest positive correlation relation to AE. In the biological treatment process, OTR/
KLa is equal OUR when airflow rate is maintained at a constant because the rate of change in dissolved oxygen concentration
remains the same. In addition, high OUR indicates high oxygen consumption by microorganisms, which suggests that oxygen

was available in abundance due to high OTR/KLa, resulting in high AE. This can be justified by the relationship between
OTR/KLa and OUR, which produced a positive correlation of 0.747** in the biological treatment process. The graphical
relationship between AE and OUR can be seen in Figure 4(d). OTR/KLa (0.542**) produced the second highest positive cor-
relation relation to AE. When OTR/KLa increases in the biological treatment process, it indicates that more mass of oxygen is

being transferred into the wastewater using less power consumption, hence AE increases. In addition, OTR/KLa is directly
proportional to AE as defined by Equation (1), hence they produce a positive relationship. The relationship between AE
and OTR/KLa can be observed in Figure 4(e).
3.2. Modelling performance results

MLP ANN algorithm was successful in modelling AE in the biological treatment process. Figure 5 shows the 226 observed
AE data that were used as input data during the training phase and the predicted AE data from the MLP ANN AE model
during the training phase. The predicted data were close to the observed data, therefore MLP ANN algorithm was able to
om http://iwaponline.com/wst/article-pdf/86/11/2912/1149650/wst086112912.pdf
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predict the AE data during the training phase. Overall performance of the model was acceptable since it was able to predict

the maximum, middle, and minimum data points accurately.
Figures 6 and 7 show 49 observed data that were determined during the experiments and the predicted data from the MLP

ANN algorithm during the validation and testing phase of the AE model, respectively. During the validation phase, the model

predicted the minimum, middle, and maximum data accurately similar to the training phase. This means that the model gen-
eralised the data accurately as shown in Figure 6. Similarly, the model was able to predict the observed data during the testing
phase. This means that the model was able to capture the observed data accurately as shown in Figure 7.

The prediction accuracy of the MLP ANN AE model was evaluated using R2, RMSE, and MSE shown in Table 3. The opti-

mum MSE of 0.00075 was determined during the validation phase of the AE model. The highest MSE of 0.0025 was
determined during the testing phase of the model. Although the testing phase produced the lowest performance, the
model performance was still acceptable. This means that the distance between the data points and the regression line are

close to each other. The difference between the highest and lowest MSE was 70%, which was a significant difference. The
relationship between MSE and number of iterations is shown in Figure 8. Similar results were obtained by the following scho-
lars (Kundu et al. 2013; Tumer & Edebali 2015; MG et al. 2018; Bekkari & Zeddouri 2019; Saleh & Kayi 2021). Saleh &
Figure 6 | Observed vs predicted values during the validation phase.
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Table 3 | MLP ANN energy consumption model performance

Training Validation Testing

R2 0.963 0.963 0.939

MSE 0.0012 0.00075 0.0025

RMSE 0.0353 0.0274 0.05

Figure 8 | Mean squared error performance at each iteration.

Figure 7 | Observed vs predicted values during the testing phase.
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Kayi (2021) applied ANN algorithm to model the prediction of COD and the model produced MSE of 0.000441. MG et al.
(2018) applied ANN algorithm in modelling WWTP performance and the model produced MSE value of 0.311. Similarly,
Kundu et al. (2013) applied ANN algorithm to model the biological removal of organic carbon and nitrogen in wastewater
and the model produced MSE of 2.81. Bekkari & Zeddouri (2019) applied ANN algorithm to predict effluent COD in waste-

water and the model produced MSE of 0.056. Tumer & Edebali (2015) applied ANN algorithm to model the biological
treatment process and the model produced MSE of 0.0041.

The blue, green, and red lines in Figure 8 indicate training, validation, and testing phases, respectively. The best line in
Figure 8 indicates the lowest MSE and number of iterations during the validation phase of the model. Because the MSE

was closer to zero during training, validation, and testing phases, it shows that the difference between the predicted and
observed data was small. The results obtained in this study showed that MLP ANN algorithm captured the AE data accurately
in the biological treatment process.

The RMSE during training, validation, and testing phase results were 0.0353, 0.0274, and 0.05, respectively, as shown in
Table 3. The optimum RMSE was determined during the validation phase, which justifies the optimum MSE obtained
during the validation phase. The difference between the highest and lowest RMSE was 29.4%, which was a significant differ-

ence. Overall, MLP ANN AE model performed well in all learning phases. Results obtained in this study were superior
compared with the results obtained by other scholars (Hamada et al. 2018; Newhart et al. 2020; Aalami et al. 2021). Newhart
et al. (2020) applied ANN algorithm to model acid disinfection performance in a WWTP and the model produced RMSE of

6.95. Similarly, Aalami et al. (2021) applied ANN algorithm to model the performance of a WWTP and the model produced
RMSE of 3.93. Hamada et al. (2018) applied ANN algorithm to model the performance of a WWTP and the model produced
RMSE of 29.69.

R2 also showed good performance during training, validation, and testing phases. The training phase of the model produced

R2 value of 0.962 as shown in Figure 9(a). This means that 96.2% of the data points fit the model accurately. Outliers are
visible in Figure 9(a), which means that some of the data points did not fit the model accurately during the training phase.
Validation phase produced R2 value of 0.923 as shown in Figure 9(b). This means that 92.3% of the data points fit the

model accurately. Similar to the training phase, outliers were visible which means that some of the data points did not fit
the model accurately. Testing phase produced R2 value of 0.939 as shown in Figure 9(c). This was a slight drop from the vali-
dation R2. Overall, the AE model performance was acceptable.

Similar results were obtained by the following scholars (Kundu et al. 2013; Tumer & Edebali 2015; Hamada et al. 2018;
Bekkari & Zeddouri 2019; Ofman & Struk-Sokołowska 2019; Oulebsir et al. 2020; Alsulaili & Refaie 2021). Alsulaili &
Refaie (2021) applied ANN algorithm to model five day biological oxygen demand in wastewater treatment and the model
produced R2 value of 0.754. Bekkari & Zeddouri (2019) applied ANN algorithm to predict effluent COD in wastewater

and the model produced R2 of 88%. Ofman & Struk-Sokołowska (2019) applied ANN algorithm in modelling nitrogen
forms in wastewater and the model produced R2 of 0.99. Oulebsir et al. (2020) modelled the activated sludge energy consump-
tion. R2 values obtained were 94.41% and 82.42% during training and testing phases. Similarly, Tumer & Edebali (2015)
Figure 9 | R2 during training phase (a), validation phase (b), and testing phase (c).
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applied ANN algorithm to model the biological treatment process and the model produced R2 of 96%. Kundu et al. (2013)
applied ANN algorithm to model the biological removal of organic carbon and nitrogen in wastewater and the model pro-
duced R2 value of 96%. Hamada et al. (2018) applied ANN algorithm to model the performance of a WWTP and the
model produced R2 of 78%.

3.3. Sensitivity analysis

Figure 10 presents the results of the AE model sensitivity analysis. The biggest driver of AE was temperature (34.6%). This was

expected since temperature controls the viscosity of wastewater. COD (21%) was the second highest contributor to AE. This
Figure 10 | Aeration efficiency model sensitivity analysis.

Figure 11 | Effect of COD (a), airflow rate (b), temperature (c), OUR (d), and OTR (e) on aeration efficiency.
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was due to the fact that organic content creates impurities in wastewater, which will create a resistance of oxygen molecules

to dissolve in the wastewater. Airflow rate (19.1%) and OTR/KLa (15.7%) contributed almost equally towards AE in the bio-
logical treatment process. The least contributor to AE model was OUR (9.6%). This implies that OUR can be eliminated as an
input to predict AE. Temperature, COD, airflow rate, and OTR/KLa are more suitable as input variables in the AE model.

The relationships between each MLP ANN AE output results and input variables are presented in Figure 11. The input
variables were controlled at 74 mg/L, 25 L/min, 35 °C, 0.2567 mg/L, and 0.1899/h for COD, airflow rate, temperature,
OUR, and OTR/KLa, respectively. The control parameters produced an AE of 0.569 kg O2/kWh. The relationship between
AE and COD concentration showed an increase of up to 88.8 mg/L, beyond that the AE decreased. This was because high

COD concentrations decrease the ability of oxygen molecules to dissolve in the wastewater due to high impurities, resulting in
low AE. Similarly, high airflow rates beyond 25 L/min affected AE, because high airflow rate consumes high power yet pro-
ducing a moderate to high OTR/KLa, resulting in low AE in the biological treatment process. This shows that high airflow

rates are not beneficial to improve AE. At high temperatures (30 °C and above) AE decreased. This suggests that the optimum
operating temperature that allows for high AE was 30 °C. AE increased with an increase in OUR. This indicates that when
OUR increases due to an increase in microorganisms, AE increases in the biological treatment process. AE increased with an

increase in OTR/KLa up to 0.1899/h. Beyond OTR/KLa of 1,899/h, AE decreased.

4. CONCLUSION

The aim of the study was to develop an AE model that can be used to monitor the performance of the biological treatment
process. The following data collected from the laboratory was used: COD, temperature, airflow rate, OUR, and OTR/KLa.

Low concentration of COD showed high AE. High AE was measured at low airflow rate of 15 L/min. High temperatures
(35 °C) produced the highest AE of 0.621 kg O2/kWh. The highest AE (0.621 kg O2/kWh) was measured at moderate
OUR of 0.2567 mg/l. AE increased with an increase in OTR/KLa in the biological treatment process. MLP ANN algorithm

was used to model the AE data. MLP ANN algorithm was successful in modelling the AE data. R2 values were 0.963, 0.963,
and 0.939 for training, validation, and testing phases respectively. MSE values were 0.0012, 0.00075, and 0.0025 for the train-
ing, validation, and testing phases, respectively. RMSE values were 0.0353, 0.0274, and 0.05 for the training, validation, and

testing phases, respectively. Sensitivity analysis showed that temperature (34.6%) and COD (21%) were the biggest drivers of
AE in the biological treatment process. The AE model can be utilized by plant managers/operaters to improve AE which ulti-
mately improves energy consumption in the biological treatment process.
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Żyłka, R., Karolinczak, B. & Dąbrowski, W. 2021 Structure and indicators of electric energy consumption in dairy wastewater treatment
plant. Science of the Total Environment 782, 146599. https://doi.org/10.1016/j.scitotenv.2021.146599.

First received 15 August 2022; accepted in revised form 21 November 2022. Available online 25 November 2022
://iwaponline.com/wst/article-pdf/86/11/2912/1149650/wst086112912.pdf

http://dx.doi.org/10.3389/fbioe.2019.00195
http://dx.doi.org/10.3389/fbioe.2019.00195
http://dx.doi.org/10.1016/j.cej.2013.12.069
http://dx.doi.org/10.1016/j.cej.2013.12.069
http://dx.doi.org/10.2175/106143006X101683
https://iopscience.iop.org/article/10.1088/1742-6596/1818/1/012035/meta
https://iopscience.iop.org/article/10.1088/1742-6596/1818/1/012035/meta
http://dx.doi.org/10.1016/j.jestch.2018.03.007
http://dx.doi.org/10.3390/w12041204
http://dx.doi.org/10.3390/w12041204
http://dx.doi.org/10.1002/jctb.2154
http://dx.doi.org/10.1515/cppm-2019-0018
https://hdl.handle.net/10520/EJC-15975b7367
https://hdl.handle.net/10520/EJC-15975b7367
http://dx.doi.org/10.18201/ijisae.65358
http://dx.doi.org/10.1016/S0043-1354(99)00217-1
http://dx.doi.org/10.1016/j.apenergy.2016.07.061
http://dx.doi.org/10.1016/j.apenergy.2016.07.061
http://dx.doi.org/10.1080/09593330.2020.1830182
http://dx.doi.org/10.5293/IJFMS.2012.5.1.010
http://dx.doi.org/10.3390/molecules23010125
http://dx.doi.org/10.3390/molecules23010125
http://dx.doi.org/10.1016/j.scitotenv.2021.146599
http://dx.doi.org/10.1016/j.scitotenv.2021.146599

	Modelling the biological treatment process aeration efficiency: application of the artificial neural network algorithm
	INTRODUCTION
	MATERIALS AND METHODS
	Laboratory experiments
	Wastewater collection
	Analysis
	Aeration process
	Disposal
	Determination of oxygen uptake rate, oxygen transfer rate/volumetric mass transfer coefficient, and aeration efficiency
	Oxygen uptake rate
	Oxygen transfer rate/volumetric mass transfer coefficient
	Aeration efficiency
	Application of artificial neural network


	RESULTS AND DISCUSSION
	Laboratory results
	Modelling performance results
	Sensitivity analysis

	CONCLUSION
	DATA AVAILABILITY STATEMENT
	CONFLICT OF INTEREST
	REFERENCES


