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ABSTRACT

Water is a necessary resource that enables the existence of all life forms, including humans. Freshwater usage has become increasingly

necessary in recent years. Facilities for treating seawater are less dependable and effective. Deep learning methods have the ability to

improve salt particle analysis in saltwater’s accuracy and efficiency, which will enhance the performance of water treatment plants. This

research proposes a novel technique in optimization of water reuse with nanoparticle analysis based on machine learning architecture.

Here, the optimization of water reuse is carried out based on nanoparticle solar cell for saline water treatment and the saline composition

has been analyzed using a gradient discriminant random field. Experimental analysis is carried out in terms of specificity, computational cost,

kappa coefficient, training accuracy, and mean average precision for various tunnelling electron microscope (TEM) image datasets. The bright-

field TEM (BF-TEM) dataset attained a specificity of 75%, kappa coefficient of 44%, training accuracy of 81%, and mean average precision of

61%, whereas the annular dark-field scanning TEM (ADF-STEM) dataset produced specificity of 79%, kappa coefficient of 49%, training accu-

racy of 85%, and mean average precision of 66% as compared with the existing artificial neural network (ANN) approach.
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HIGHLIGHTS

• Deep learning methods have the ability to improve salt particle analysis in saltwater’s accuracy and efficiency, which will enhance the

performance of water treatment plants.

• This research proposes a novel technique in the optimization of water reuse with nanoparticle analysis based on machine learning archi-

tecture. Here, the optimization of water reuse is carried out based on nanoparticle solar cells for water treatment.
1. INTRODUCTION

Disposal of solid wastes by landfill is a more widely utilized disposal technique compared to others due to its economic

advantages as well as simplicity (Rajput et al. 2022). Leachate develops in landfill areas as a result of water’s impact on
waste composition, precipitation, and physical, chemical, and biological processes. Wastewater with a high level of contami-
nants, including monovalent and multivalent ions, bacteria, and heavy metals, is referred to as leachate. Chemical

composition of leachate is influenced by the type of trash in the landfill, waste content, landfill age, and environmental con-
ditions (Zhong et al. 2022). Chemical oxygen demand (COD), total phosphorus (TP), and organic nitrogen concentrations in
normal leachate vary between 140 and 152,000 mg/L, 0.1 and 30 mg/L, and 14 and 2,500 mg/L. In landfill regions, liners

with low hydraulic conductivity (k� 10� 7 cm/s) are employed to stop leachate from getting into groundwater. Numerous
variables, including void ratio, medium porosity, pore size, soil type, liquid type, and contaminant concentration, all affect
hydraulic conductivity (Fu et al. 2021). The structure and characteristics of the clay are altered throughout the leachate’s
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passage through the clayey soil, altering its hydraulic conductivity. The leachate’s increased ion concentration, ionic valence,

and organic matter concentration all help to boost hydraulic conductivity, while its increased microbial population and con-
centration of suspended solids help to lower it. Some of the factors that contribute to improvement in hydraulic conductivity
as a result of leachate-liner interaction include thinned diffuse double layer (DDL) thickness of the clay, agglomeration, floc-

culation of clay particles, formation of cracks in soil structure, and a rise in void ratio. Growing global population increases
water usage and daily pollution production (Alshehri et al. 2021). Approximately 2.4 billion people worldwide do not have
access to reliable sanitation services, both in urban and rural regions. Within 20 years, 2 billion more people are expected to
reside in towns and cities, mostly in developing nations, increasing the demand for sanitation. Sewage is released untreated

and damaging lakes, rivers, and coastal areas in more than 90% of developing nations. Traditional sanitation practises, which
rely on water-wasting toilets, are not an appropriate answer for industrialized and developing nations. The sanitation systems
were created and planned under the assumption that human excreta was a type of waste that could be disposed of in the

environment and be assimilated by it. EcoSan is a cycle of a sustainable closed system used in sanitation systems that can
bridge the gap between agriculture and sanitation. The EcoSan strategy emphasizes resource management and offers a com-
prehensive approach to environmentally and financially sound sanitation. The major goal is to promote sustainable

development by reducing nutrient and water cycles while using less resources and energy. The EcoSan system is a different
method for avoiding the drawbacks of traditional wastewater systems (Melesse et al. 2020).

Smart technology and newly developed artificial intelligence (AI) and machine learning (ML) are filling a void in water

applications that were previously left unfilled by conventional methods and ways of thinking. Smart technology and newly
developed AI and ML are filling a void in water applications that were previously left unfilled by conventional methods as
well as ways of thinking. According to some projections, the water industry will spend up to 10% of over $90 billion in invest-
ments that are anticipated to mature by 2030 on AI. Because of its universality, resilience, and relative ease of design, AI, ML,

and smart methods are projected to methods as well as solve complex and challenging problems in water applications, result-
ing in cost savings and process optimization. Water as well as wastewater treatment, monitoring of natural methods, and
precision/water-based agriculture are a few water-related applications that have seen substantial ML usage. These industry

studies rely on a variety of ML methods, with the most popular ones being artificial neural network (ANN), recurrent
neural network (RNN), radio frequency (RF), support vector machine (SVM), and adaptive neuro-fuzzy inference system
(ANFIS), with sporadic use of AI techniques like fuzzy inference systems (FISs). ANN-RF and SVM-RF are two examples

of hybrid algorithms that combine two ML systems in applications. Studies have shown success using both AI and ML to
optimize modelling processes in water-based settings (Chang et al. 2022).

Contribution of this research is as follows:

1. To propose a novel technique in the optimization of water reuse with nanoparticle analysis based on ML architecture.
2. Optimization of water reuse is carried out based on nanoparticle solar cells for water treatment.
3. Saline composition has been analyzed using a gradient discriminant random field based on saline water treatment.

2. RELATED WORKS

Intelligent scissors, distance regularized level set evolution, and graph cuts are some recently developed advanced segmenta-

tion algorithms that have enhanced performance, which reduces high-throughput advantage of computerized data analysis.
The concentration of dissolved oxygen (DO) in wastewater can be significantly reduced by a high temperature, which causes
aquatic species to perish (Aghilesh et al. 2021). A drop in DO will cause nitrogen to be transformed into nitrate molecules,

which will also produce unpleasant odours. The wastewater’s odour and health may be harmed if the hue gradually turns
from grey to blackish brown (Wang et al. 2021). Wastewater must be treated before being released freely into a body of
water in order to protect public health (Jiang et al. 2021). Water is necessary for human living, but wastewater needs our
attention because it is the primary source of most diseases. Additionally, the main source of sickness is water (Wei et al.
2022). 80% of disease outbreaks in 2002 were attributed to water contamination by microbes, according to WHO data
(Wang et al. 2020). Because losses are a result of the uncertainty introduced by risks, risk management is essential for low-
ering losses (Li et al. 2021). Effective management is required to reduce these risks. As part of this management, procedures

must be carried out effectively in order to accomplish an objective. Pre-analysis, prediction, and control are all effective ways
to lower possible risks (Nam et al. 2022). Therefore, risk management is required to lower the likelihood of failure and offer
convenience for handling prospective risks. The methodical process of identifying environmental threats, reviewing probable
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outcomes, and controlling the amount of environmental risk is one specific illustration of environmental risk management

(Astray et al. 2021). The four steps of risk management for the environment are issue formulation, risk analysis, risk charac-
terization, and risk management (Zhao et al. 2020). Large datasets can be efficiently classified using ML techniques in a
variety of domains, including biology and text mining (Alqahtani et al. 2022). Particle shape categorization is now accom-

plished using deep learning techniques like CNN algorithms and ANN (Bagheri et al. 2019). This method produces good
results for particular particle forms, but in order to produce training datasets, it requires prior knowledge about the latter.
An unsupervised ML technique, which does not need prior input or data training, is preferable to accomplish generalization
in data analysis (Hoa et al. 2019). Unsupervised ML techniques may effectively evaluate the size as well as shape information

of nanoparticles, according to recently published studies; however, they are only applicable to nanoparticles with distinct
shapes, significant visual contrast, and good dispersions, such as gold nanorods (isolated particles). Due to a variety of nano-
particle compositions, dispersions, and imaging settings, it is actually challenging to ensure a sharp contrast as well as a

homogeneous background in energy management images (Zeng et al. 2018; Chen et al. 2021).
Wastewater processing plants can benefit from adaptive ML models by minimizing downtime and increasing profits

through more efficient management. The use of an ensemble technique increased prediction accuracy by 5% when compared

to using only the individual base models (Zaghloul & Achari 2022). Controlling chlorination using AI approaches has been
shown to be successful while predicting disinfection by-products (DBP) concentrations and key parameters for adsorption
and membrane-filtration processes using ML models has shown similar promise. By establishing the connection between

input and output among system variables, we may improve AI and ML application efficiency that suffers from differences
in the quality of data used for testing and training (Lowe et al. 2022). Successful real-time surveillance, optimization, uncer-
tainty prediction, and fault identification for intricate environmental systems are all possible due to ML algorithms, which
proved useful in predicting the uncertain behaviours of treatment procedures. Hyperparameter tweaking is used during

the machine learning algorithm (MLA) selection process to discover the optimal solution in the least amount of time
while using the fewest available computing resources (Sundui et al. 2021).

From the related study findings, it was found that there is a gap in the application of nanoparticles in solar panels to

improve water reuse and to determine the saline composition. Also, the application of ML techniques in water reuse is
very limited. Incorporating these approaches in the present study makes it novel and distinct with the adoption of datasets
from bright-field tunnelling electron microscope (BF-TEM) and annular dark-field scanning TEM (ADF-STEM).
3. SYSTEM MODEL

This section discusses a novel method in the optimization of water reuse with nanoparticle analysis based on ML architec-
ture. Here, the optimization of water reuse is carried out based on nanoparticle solar cells for water treatment. For the
aforementioned reasons of easiness, acceptable accuracy, speed, and high performance without the requirement to be skilled

professionals in physical issues, ML models are increasingly being utilized to handle most of the complicated practical, real-
world problems faced in numerous domains of life (Sarker 2021). The nanoparticles have a porous structure that allows them
to absorb large amounts of water while retaining their ability to reject dissolved salts and other contaminants. Nanoparticles,

due to their low bulk density, active surface state, and distinctive photoluminescent, and biocompatible features, nanoparti-
cles can take in infrared light and generate visible light, which solar cells can then convert into extra electricity. A
considerable increase in photocurrent is achieved when light that hits on the solar panel strikes the nanoparticles, scatters,

and may hit additional nanoparticles and bounce several times within the system (Olaimat et al. 2021). The saline compo-
sition has been analyzed using a gradient discriminant random field based on saline water treatment. The proposed
architecture is shown in Figure 1.

Pre-processing begins with separating the image’s background from the particles. Setting a global brightness threshold to

remove the backdrop from the image is one approach that is frequently used to do this. This method takes advantage of con-
trast in brightness between particles as well as background in TEM image. The inhomogeneity of the background presents a
problem non-depending on this method to create accurate background-removed photos. This inhomogeneity might be caused

by differences in the sample backdrop matrix’s thickness, surface unevenness, or by uneven electron microscope illumination.
When a global filtering threshold is used, inhomogeneous background causes regional background to be both over- as well as
under-filtered in the removal method. Because of this, the technique either fails to effectively isolate particles or introduces
://iwaponline.com/wst/article-pdf/87/11/2793/1257567/wst087112793.pdf
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artefacts, which distort shapes. Such insufficient background removal can compromise the precision of particle shape data
(Wen et al. 2021).

Solar energy can be absorbed by PV cells. Due to the fact that they are semiconductor devices, they may transform the
absorbed energy into useful electrical power. P-N junction diodes are used in the construction of the PV module structure.
These diodes can transform incident light that reaches their surface into electrical energy (Pastuszak & Węgierek 2022).

Figure 2 illustrates the fundamental design, wiring, and operation of a PV module:
In constructing the PV, there are two layers of silicon present: a negative N layer and a positive P layer that is doped with

boron. The tempered glass-coated PV module absorbs solar energy when it is exposed to the sun. After a certain amount of
time, the energy absorbed exceeds the band gap energy level, which causes electrons to travel from conduction band to

valence band via that band. Due to this, electrons in the conduction band can flow freely and form electron–hole pairs.
Figure 2 | Working of photovoltaic.
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Since the flow of electric current is caused by the movement of electrons, the electricity produced during the process is used

to power the load. In order to generate adequate electricity, an array configuration is insufficient because these systems
experience numerous losses (Al-Ezzi & Ansari 2022). The ideal method for maximizing each string’s effectiveness is
MPPT (maximum power point tracking). The most power possible from PV modules can be obtained by using such control

approaches.
The energy management system (EMS) keeps state of charge (SOC) between SOCmax and SOCmin (20–90%) within a pre-

determined range. The EMS operating techniques implemented state that generating power from solar panels and wind
turbines takes precedence over other sources of energy in order to meet load needs. The excess power will be used to

charge the battery with a reference value if the amount of power supplied by the PV and wind is greater than the amount
needed to power the load, or PPVþ PWind.PLoad by Equation (1):

PB�ref ¼ �PLoad þ (PPV þ PWind) (1)

where PPV and PWind are the power generated by the PV and wind turbines, respectively, and PB-ref is the reference

battery power that will be used to charge the battery. Power demand is PLoad. The battery keeps charging until its state of
charge, or SOC, reaches its maximum point, or SOCmax, which is 90%. The electrolyzer (ELZ) will then use the remaining
power to produce hydrogen for the solid oxide fuel cell (SOFC) until the pressure reaches its maximum level. The extra energy

produced will then be exported to the grid. The energy storage system’s overall size and weight can be decreased by using a
DC/DC converter with an incorporated magnetic structure. Additionally, a magnetic structure that is integrated helps lessen
the output current ripple (Kumar et al. 2020).

Referencing overall DC-link voltage and energy time-variations should be done to emphasize the workings of the proposed
hybrid energy storage electric converter (HESEC). These can be accomplished using Equations (2) and (3):

CDC
dVDC

dt
¼ iB � iDC , iDC ¼ cHiH þ cLiL (2)

dEDC

dt
¼ VDC(iB � ip) , ip ¼ vHiH þ vLiL (3)

where the equivalent DC-link and power currents, iDC and ip, are proportional to energy exchanged by electrical drive and
DC-link. In reference to (5), cH and cL are per-unit capacitances in Equation (4), and CDC stands for the equivalent DC-link

series capacitance:

CDC ¼ CHCL

CH þ CL
, cH ¼ CH

CH þ CL
, cL ¼ CL

CH þ CL
(4)

The per-unit capacitor voltages are represented by vH and vL in Equation (5):

vH ¼ VH

VH þ VL
, vL ¼ VL

VH þ VL
(5)

Still referring to both (4) and (5), it can be said that if suitable combinations of (cH,cL) and (vH,vL) exist, VDC and EDC can be
changed separately. DC-link energy base value might be provided as Equation (6) to support the preceding claim:

ÊDC ¼ l
2
CLV2

DC (6)
://iwaponline.com/wst/article-pdf/87/11/2793/1257567/wst087112793.pdf
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The per-unit energy content of the DC-link can thus be simply obtained as Equation (7) by multiplying (4) by (7):

eDC ¼ zv2H þ (I � vu)
2 (7)

in which ζ denotes unbalanced capacitance factor:

z ¼ CH

CL
(8)

Therefore, by altering the continuous operating (Uc) voltage within a specific range, one can usefully introduce DC-link
voltage unbalances while maintaining the total DC-link voltage. In order to regulate the energy flows among each HESEC
component optimally, proper DC-link energy and voltage rules are required. Solar panels are used to gather this electricity

from the ambient sunlight. Light energy is converted directly into DC electrical energy by the solar panel. To charge the bat-
tery, the DC–DC converter adjusts the DC voltage. The wireless sensor networks (WSN) node is powered by a rechargeable
battery. The sensor measurement unit is used by the WSN node to measure the desired physical quantity. This data is pro-

cessed by a microcontroller in the computing unit (Akgül et al. 2018). Figure 3 represents the solar energy harvesting
methodology.

Gradient discriminant random field-based saline water composition analysis:
Variations in batch-wise training come from the gradient variance. The use of a random sample has the advantage of requir-

ing much fewer computations per iteration while the disadvantage is noisy gradient. Note that iterations are used to calculate
the convergence rate in this section. We must define the Lyapunov process by Equation (9) in order to study the training
dynamics per iteration (Hou & Yi 2020):

ht ¼ wt �w��� ��2
2 (9)

The variable ht is a random number, and the equation evaluates the separation between present solution, wt, and ideal sol-
ution, w∗. Consequently, using Equations (10) and (11), it is possible to determine the stochastic gradient descent’s (SGD)
Figure 3 | Block diagram of solar energy harvesting.
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convergence rate (Hu et al. 2021):

htþ1 � ht ¼ wtþ1 �w��� ��2
2� wt �w��� ��2

2¼ (wtþ1 þwt � 2w�)(wtþ1 �wt) ¼ (2wt � 2w� � htrcw(dt))(�htrcw(dt)) (10)

¼ �2ht(w
t �w�)rcw(dt)þ h2

t (rcw(dt))
2 (11)

It implies how much progress can be made in one iteration. The convergence rate is improved by decreasing VAR{∇ψw(dt)}.
Average convergence rate at an iteration’s precision is produced by the expectation of Equations (12) and (13):

E{htþ1 � ht} ¼ �2ht(w
t �w�)E{rcw(dt)}þ h2

t E{(rcw(dt))
2} (12)

¼ �2ht(w
t �w�)Ejrcw(dt)} þ h2

t (E{rcw(dt)})
2 þVAR{rcw(dt)} (13)

Let’s assume that ψw(dt) is convex so as to make the analysis of Equation (14) simpler.

htþ1 � ht , 0� (wt �wz)E{rcw(dt)} , 0 (14)

The objective estimation of E{∇ψw(d)} is E{∇ψw(dt)}. Therefore, increasing an iteration’s contribution is equivalent to mini-

mizing VAR{∇ψw(dt)}. This angle has been adequately covered. With respect to dt, an iteration’s contribution, htþ1 ht, changes.
Equations (15) and (16) show the following as variance of htþ1 ht:

VAR{htþ1 � ht} ¼ 4h2
t (w

0 �w�)2VAR{rcw(dt)}þ h4
t VAR{(rcw(dt))

2} (15)

� 2h3
t (wt �wz)COV(rcw(dt), rcw(dt)

2) (16)

The equation shows that VAR{htþ1� ht}, 0, indicating that gradient updates do not contribute uniformly. It’s intriguing to
note that ∇ψw(dt) 2 and ∇ψw(dt), the deciding variables in this equation, depend on dt, indicating a relationship between htþ1

ht and dt.
This original idea drives us to research the variables in dt that influence convergence rate htþ1 ht and how to solve load

balance issues in training. There has been numerous research on the variance reduction on ∇ψw(dt), but few have gone in
this way. Every iteration k, the update shown in Equation (17) is carried out:

z(kþ 1) ¼ z(k)� ak�g(k) (17)

where stepsizes satisfy ak ¼ 1=mk, and �g kð Þ ¼ ð1=nÞPn
i¼1 gi z kð Þ; ji kð Þð Þ, i.e., �g(k) is average of n noisy gradients evaluated at

z(k). As a result, using more than one gradient improves the accuracy of the gradient estimation. In fact, by Equation (18)
is what we have from assumption:

E k �g kð Þ � rf z kð Þð Þk2� ¼ 1
n2

Xn
i¼1

E gi z kð Þ; ji kð Þð Þ � r fi z kð Þð Þk k2
h i

� s2

n
(18)

We will focus on two error terms, which are different from analysis for SGD. Expected squared distance between z(k) and
z* is defined by the first term, called expected optimization error, and expected consensus error, or expected E �z kð Þ � z�k k2

h i
error, gauges disparities of individual estimates among all agents. Equation (19) specifies the average squared distance
between each iterate zi(k) and ideal z:

1
n

Xn
i¼1

E zi kð Þ � z�k k2
h i

¼ E �z kð Þ � z�k k2
h i

þ 1
n

Xn
i¼1

E zi kð Þ � �z kð Þk k2
h i

(19)
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Therefore, examining the two terms will give us information about how distributed stochastic gradient descent (DSGD) is

performing. Denote U kð Þ ¼ E �z kð Þ � z�k k2
h i

;V kð Þ ¼ Pn
i¼1 E zi kð Þ � �z kð Þk k2

h i
; 8k to simplify the notation., ∀k We start by look-

ing for an inequality that limits U(k), which is comparable to E z kð Þ � z�k k2
h i

in SGD and was inspired by the study for SGD.
Equation turns out to be one of these relationships as in Equation (20):

U(kþ 1) � 1� 1
k

� �2

U(k)þ 2Lffiffiffi
n

p
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U(k)V(k)

p
k

þ L2

nm2

V(k)
k2 þ s2

nm2 k
2 (20)

The anticipated consensus error V(k) representing the extra disturbances brought on by the variations in solutions. Two
extra terms are probably insignificant in the long run, though, assuming V(k) decays quickly enough relative to U(k), and
we would infer that convergence rate of U(k) is similar to R(k) for SGD. V(k) � O(n=(1� l)2)(1=k2) for k � O(1=(1� l)).

Plugging this into Equation (21) leads to inequality U(k) � u2s2=((1:5u� 1)nm2k)þO(1=(1� l)2)(1=k2). Hence, when
k � O(n=(1� l)2), we have that

1
n

Xn
i¼1

E zi kð Þ � z�k k2
h i

� s2

nm2k
O 1ð Þ (21)

With the same amount of processing power, DSGD performs similarly to a centralized stochastic gradient

descent algorithm after a transient. Using a multilevel logistic prior, a type of Markov random field (MRF), the geographical
information is included. In the Bayesian technique, the posterior distribution is often maximized to provide classification
results. Maximal a posterior (MAP) ymap¼ arg max y p y|X predicts class result by maximizing p y |X while taking into account
the input X. MAP estimate can be expressed as an Equation (22) according to Bayes’ theorem:

ymap ¼ argm
y

p(yjX) ¼ argm
y

p(Xjy)p(y) (22)

where p(X | y) is a likelihood function, which signifies the likelihood of input data given the labels, and p(y) denotes the prior
over the labels in y in Equation (23) and in Equation (24):

p Xjyð Þ ¼
Yi¼m

i¼1

p xijyið Þ (23)

p(X | y) can be written as

p yjXð Þ ¼ 1
p Xð Þp Xjyð Þp yð Þ ¼

Yi¼m

i¼1

p xið Þ
p Xð Þ

Yi¼m

i¼1

p yijxið Þ
p yið Þ p yð Þ ¼ a xð Þ

Yi¼m

i¼1

p yijxið Þ
p yið Þ p yð Þ (24)

where a(x) ¼ Qi¼m
i¼1 p(xi)=p(X) is a coefficient independent of y. Finally, the MAP categorization is used as

Equation (25):

ymap ¼ arg max
m

y

Xm
i¼1

logp yijxið Þ þ logp yð Þ
( )

(25)

The final classification outcome for the suggested method will be the MAP classification. In (25), the MRF-based multi-
level logistic (MLL) prior will be utilized as the prior p(y) to encode the spatial information, while the density p yi | xi given
by the pixel classifier modelled by CNN with spectral characteristics. This issue is resolved using the MRF-based local
binary patterns (LBP) technique, which can also discover the association between spectral and spatial data. The Gibbs dis-
tribution, according to the Hammersley–Clifford theorem, expresses the likelihood that an MRF will be relevant. As a
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result, Equation (26) provides the MLL prior

p yð Þ ¼ 1
Z
exp m

X
i;jð Þ[C

d yi � yj
� �0

@
1
A (26)

where Z stands for the normalizing constant and is the smoothness parameter, C stands for a pair of adjacent pixel set and
is a unit impulse function, where d(y ¼ 0) ¼ 1 and d(y = 0) ¼ 0. The MLL prior favours piecewise smooth classification

since it increases the likelihood that adjacent pixels will have the same label. Finally, the equation provides the MAP esti-
mation when (25) and (26) are combined (27):

ymap ¼ argmax
y

Xm
i¼1

logp yijxið Þ � m
X
i;jð Þ[C

d yi � yj
� �8<

:
9=
; (27)

A challenging combinatorial optimization issue is referred to as the minimization of the equation in (19).
4. PERFORMANCE ANALYSIS

The machine used for the experiment has the following hardware components: an Intel Core i5 7200U processor, 8 GB of
RAM, a 1 TB hard drive, and NVIDIA GTX 760MX graphics. Additionally, Python 3.5 environments were utilized to simu-

late how the suggested strategy might be put into practise. In order to establish results of offered technique, we carried out a
statistical analysis by evaluating expected performance.

Nanoparticle description: Drop-casting nanoparticle dispersions onto Cu TEM grids with the holey carbon film coating was
used to create the TEM samples of nanoparticles. ADF-STEM or BF-TEM modes of the JEOL F200 (Akishima, Tokyo, Japan)

were used to photograph the nanoparticle TEM samples.
Table 1 gives analysis for TEM dataset. Here, the dataset analyzed are BF-TEM and ADF-STEM in terms of specificity, com-

putational cost, kappa coefficient, training accuracy, and mean average precision.

Figure 4(a)–4(e) gives analysis for BF-TEM dataset. Proposed technique attained specificity of 75%, computational cost
of 51%, kappa coefficient of 44%, training accuracy of 81%, and mean average precision of 61%; existing ANN attained
specificity of 71%, computational cost of 45%, kappa coefficient of 41%, training accuracy of 77%, and mean average

precision of 55%; CNN attained specificity of 73%, computational cost of 48%, kappa coefficient of 43%, training accu-
racy of 79%, and mean average precision of 59%. A glass cuvette filled with water was used to create the sample solution
that was utilized to create the scattering pattern. Sodium chloride was added in intervals of 10 ppt. Salt solution’s maxi-

mum concentration was 100 ppt, while its minimum concentration was 0 ppt. Using the ready samples, two classes were
produced, which are tabulated in Table 1. When tested with our dataset, the suggested ML model outperformed these
models in terms of saline water particle identification accuracy, but the other techniques’ Kappas remained the same
(Arabameri et al. 2021). Figures 4 and 5 depict other performance measurement metrics utilized for evaluation, which

are detailed below.
The following parameters must be understood in order to perceive and comprehend the categorization model that has been

put into use: True Positives (Tp) – If the actual class labels and expected class labels match, this calculates to true. True
Table 1 | Analysis based on various TEM image dataset

Dataset Techniques Specificity Computational cost Kappa coefficient Training accuracy Mean average precision

BF-TEM ANN 71 45 41 77 55
CNN 73 48 43 79 59
OWR_SC_MLA 75 51 44 81 61

ADF-STEM ANN 72 51 45 79 60
CNN 76 53 48 83 63
OWR_SC_MLA 79 55 49 85 66
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Figure 4 | Analysis for BF-TEM in terms of (a) specificity, (b) computational cost, (c) kappa coefficient, (d) training accuracy, and (e) mean
average precision.
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Negatives (Tn) – If actual class labels match projected class labels, this evaluates to false. False Positives (Fp) and False Nega-
tives (Fn) specifications indicate whether actual class labels correspond to predicted class by the model or the opposite (Patel

et al. 2022; Gerevini et al. 2023).
Figure 5(a)–5(e) gives analysis for ADF-STEM dataset. Proposed technique attained specificity of 79%, computational cost

of 55%, kappa coefficient of 49%, training accuracy of 85%, and mean average precision of 66%; existing ANN attained speci-

ficity of 72%, computational cost of 51%, kappa coefficient of 45%, training accuracy of 79%, and mean average precision of
60%; CNN attained specificity of 76%, computational cost of 53%, kappa coefficient of 48%, training accuracy of 83%, and
mean average precision of 63%. These metrics scores show that by categorizing salt particles, our deep learning classification
model makes precise classifications and predictions. The implemented method was compared with comparable salinity-based

prediction methods in order to demonstrate that our classification approach is reliable and produces cutting-edge results
om http://iwaponline.com/wst/article-pdf/87/11/2793/1257567/wst087112793.pdf
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Figure 5 | Analysis for ADF-STEM in terms of (a) specificity, (b) computational cost, (c) kappa coefficient, (d) training accuracy, and (e) mean
average precision.
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(Khan et al. 2022). We sought to compare it with best ML algorithms used to evaluate salinity because there has not been
much research done on identification of seawater salinity concentration, making it impossible to compare it with other
methods used in this field of research.

5. CONCLUSION

This research proposes a novel technique in the optimization of water reuse with nanoparticle analysis based on ML archi-
tecture. The saline composition has been analyzed using gradient discriminant random field based on saline water treatment.

The produced solution functions as seawater and utilized to identify concentration of salt particles in seawater because con-
centration of salt particles in sea or seawater ranges to about 35 ppt. This could be helpful for desalinated water treatment
plants. It was noted that our adopted method had shown to be effective and precise in terms of precision. Additionally, a
://iwaponline.com/wst/article-pdf/87/11/2793/1257567/wst087112793.pdf
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real-world dataset was used to target salinity of seawater utilizing a combination of ML methods, allowing performance as

well as resilience of proposed method to be evaluated. Proposed technique attained specificity of 79%, computational cost
of 55%, kappa coefficient of 49%, training accuracy of 85%, and mean average precision of 66%.
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