Adsorption of Cu$^{2+}$ to biomass ash and its modified product

Lei Xu, Hongbiao Cui, Xuebo Zheng, Jiani Liang, Xiangyu Xing, Lunguang Yao, Zhaojin Chen and Jing Zhou

ABSTRACT

Ash produced by biomass power plants has great potential for the removal of heavy metal ions from aqueous solution. The pollution of toxic heavy metals to water is a worldwide environmental problem. Discharges containing copper, in particular, are strictly controlled because the excessive copper can cause serious harm to the environment and human health. This work aims to investigate the adsorption characteristics of copper ions in aqueous solution by biomass ash and the modified products, and to evaluate their potential application in water pollution control. The biomass ash was modified with a mesoporous siliceous material and functionalized with 3-aminopropyltriethoxysilane. The surface properties of the biomass ash and the new matrix were studied to evaluate their adsorption property for Cu$^{2+}$ ions at different pHs, initial metal concentrations and the thermodynamic and kinetic were studied. The chemical and morphological properties of this modified material are analyzed; the specific surface area of the modified biomass ash was nine times that of the initial ash. Both of the two materials showed a strong affinity for Cu$^{2+}$, and the Langmuir model could best represent the adsorption characteristics of Cu$^{2+}$ on the two kinds of materials. The adsorption capacity of copper on the material increased with the increase of pH and pH 6 was the optimum pH. Thermodynamic analysis results showed that the adsorption of Cu$^{2+}$ was spontaneous and endothermic in nature. The adsorptions of Cu$^{2+}$ onto the modified biomass ash followed pseudo-second-order kinetics.

Key words | adsorption, biomass ash, copper, modification, nanomaterials

INTRODUCTION

Generating electricity by combustion of biomass materials has become one of the strategies to solve the energy crisis for developed and developing countries. However, during the combustion, the inorganic constituents of the biomass form biomass ash, thus increasing its accumulation in the environment (Vamvuka & Kakaras 2011; Ciesielczuk et al. 2014). A large number of studies have been carried out on the accumulation of biomass ash, aiming to facilitate the potential industrial application (Williams 1997; James et al. 2012; Quirantes et al. 2016). Biomass ash shows good adsorption properties for metals; due to its plenty, it has been increasingly used as a cheap material for the removal of heavy metals from wastewater (Seweryn 2012; Okmanis et al. 2015). Compared with other technologies such as ion exchange, chemical
precipitation, electrochemical treatment, membrane technology, evaporation and solidification, the adsorption method has been widely used (Zhang et al. 2013). Massive mesoporous materials based on silicon dioxide have been extensively studied and partially commercialized (Xia & Mokaya 2015; Tamayo et al. 2015). These materials have many advantages such as a large specific surface area, good thermal and mechanical stability, homogenous pore and perfect pore morphology, high functionalization characteristics and high adsorption capacity (Krawiec & Kaskel 2006; Boukai et al. 2008). Furthermore, the adsorption capacity of these materials for some metal ions have been increased by combining some organic functionalities on the surface of the material and/or inside the pores (Messina & Schulz 2006; Saeung & Boonamnuayvitaya 2008; Alyoshina & Parfenyuk 2013). These materials with nanostructures can be used as an effective material for the removal of heavy metals from industrial waste water (Hao et al. 2016; Zhu et al. 2017), thus recovering valuable metals.

Heavy metals, especially copper (Cu), accumulate in the environment, causing serious threat to the environment and human health (Mendicino & Brown 1998; Ndilila et al. 2014; Takaishi et al. 2015). Studies show that Cu pollution has been a serious threat to food safety and human health in China (Hu et al. 2014; Wang et al. 2014). Many studies have reported the removal of Cu2+ from aqueous solutions, peanut shell, zeolite, coal fly ash, activated carbon, and biochar have been used to remove Cu2+ efficiently from aqueous solutions (Soço & Kalemkiewicz 2013; Qiang et al. 2015; Demiral & Güngör 2016; Jiang et al. 2016; Shen et al. 2017); however, biomass ash, especially its modified product, have been rarely studied for Cu2+ adsorption. In this study, the efficiency of biomass ash, especially its modified product, for Cu2+ adsorption was investigated.

Herein, combining these two systems has the advantages of improvement of adsorption efficiency and the abundant availability in supply at no or low cost. Based on these premises, combined with these two cheap materials, developing a new material with stronger adsorption ability for Cu2+ and better stability in acidic medium was the main goal of this work. The strengthening and optimization of the conditions were emphasized in the process of the experiment.

MATERIALS AND METHODS

Biomass ash

The biomass ash sample was collected from a power plant firing agricultural residues in Anhui province, China. Mixed feeds such as wheat stem, maize straw, groundnut shell, and cotton stalk were used in the power plant. They were fired in a traveling-grate furnace at ~850 °C with excess air. The ash was collected from the tank located below the grate. The elemental composition and morphology of the biomass ash were analyzed.

Modification experiment

The biomass ash was modified with a hexagonal mesoporous silica (HMS) matrix by co-condensation (Walcarius & Mercier 2010); the hexagonal structure changed after the reaction with biomass ash. Because of the presence of silicate, the modified hexagonal structure acted as a catalyst, increasing the reactivity of tetraethyl orthosilicate (TEOS). The synthesis was carried out as follows. First, 1.24 g dodecylamine was dissolved in an alcohol (10 mL), and then a mixture of 1.24 g biomass ash in 90 mL ultrapure water (CN61M-UPR-I-20 L) was added to it under stirring at 1,000 rpm. Then, 6.09 mL TEOS and 0.71 mL of an organosilane, 3-aminopropyltriethoxysilane (APS, NH2(CH2)3Si(OC2H5)3), were added. After 30 s, 0.94 mL of trimethylbenzene (TMB) was added into the mixture, and then was stirred for 24 h. The mixture was then filtered through a 0.45 μm filter membrane and the remaining residue was air dried at room temperature. The remaining TMB was Soxhlet extracted with alcohol (125 mL) for 5 h. The sample was then air dried at room temperature for 24 h (Walcarius & Mercier 2010).

Physicochemical and morphological characterizations

The physicochemical properties of the biomass ash and modified biomass ash (modified with HMS matrix and functionalized with 10% APS) were evaluated by five analytical techniques. The elemental composition of the biomass ash was analyzed by inductively coupled plasma optical emission spectrometry (ICP-OES) (Perkin Elmer Optima 2000 optical emission spectrometer). The surface morphology of the biomass ash and modified biomass ash was observed using an S-4800 scanning electron microscope (SEM) (Hitachi, Tokyo, Japan) (Pizarro et al. 2015). Topographic analysis and quantification of the components of the biomass ash were performed using a JEM-2010HT transmission electron microscope (JEOL Ltd, Akishima, Tokyo, Japan) equipped with an energy-dispersive spectrometer (EDS). The functional groups present in the biomass ash were characterized by Fourier transform infrared spectroscopy (FTIR) using the Spectrum Two™ IR spectrometer (Perkin Elmer, Waltham, MA, USA)
in the range 4,000–500 cm\(^{-1}\) (Noli et al. 2015) and specific surface area was measured by the Brunauer-Emmett-Teller (BET) method (Pizarro et al. 2015).

Adsorption experiments

In order to evaluate the Cu\(^{2+}\) adsorption capacity of the modified material, various adsorption experiments were carried out. The effects of the initial Cu\(^{2+}\) concentration, pH, kinetic and thermodynamic were evaluated using guaranteed reagent. Copper solutions used in the experiment were prepared from copper standard solution of 1,000 mg/L Cu(NO\(_3\))\(_2\) in 0.5 M HNO\(_3\) and ultrapure water (CN61M-UPR-I-20 L). The pH was adjusted with 0.1 M HNO\(_3\) and 0.1 M NaOH.

Effect of pH

The effect of pH on the adsorption of metals can be attributed to the surface charge of the materials (biomass ash and modified biomass ash) and the distribution associated with the metal species (Cretescu et al. 2015). In order to determine the optimum pH, 0.1 g of the two adsorbents were respectively added to 25 mL solution with 50 mg/L Cu\(^{2+}\) in the pH range 2.0–8.0.

Adsorption equilibrium experiment

The adsorption capacity of the modified biomass ash was evaluated at different adsorbate concentrations by mixing 0.1 g of the adsorbent with 25 mL of a Cu\(^{2+}\) solution at the desired Cu\(^{2+}\) concentration (50–100 mg/L) adsorbate concentrations at initial pH 5. The adsorption experiments were carried out in 50 mL centrifuge tubes, under stirring at 150 rpm for 24 h, under the conditions of 30 °C. In order to study the thermodynamic characteristics of the adsorption process, the operating procedures were repeated at 45 and 60 °C.

Adsorption kinetics

The adsorption rate of the adsorbent in solution for metal ion can be understood by studying the kinetic characteristics of the adsorption process. Through the fitting of the experimental data with the kinetic model, the adsorption mechanism can be understood. The adsorption kinetics of Cu\(^{2+}\) was studied by adding 0.2 g of the modified biomass ash into the aqueous solution (100 mg/L, pH 5, 100 mL), and shaking with 150 rpm at 30 °C in a reciprocating shaker, 5 mL sample was collected by pipette (Eppendorf, Research Plus, 0.5–5 mL) at 0.5, 1, 2, 3, 5, 10, 15, 30, 60, 90, 120, 180, 240 min, respectively. After equilibration, the suspension was centrifuged at 4,000 rpm for 10 min, then the supernatant was filtered with a 0.45 μm membrane, and the Cu\(^{2+}\) concentration in solution was determined by atomic absorption spectrophotometry (SpectrAA-220).

Data processing

Microsoft Excel 2010 (Microsoft Corp., Redmond, WA, USA) and SPSS 20.0 (IBM SPSS, Somers, NY, USA) were used to conduct the data processing.

RESULTS AND DISCUSSION

Physicochemical and morphological characteristics

The major elements present in the biomass ash were silicon, calcium, and potassium at concentrations of 120.40, 43.14, and 35.11 mg/g, respectively (Table 1). The SEM analysis results show that the biomass ash mainly consists of spherical particles and a part of sheet particles with diameters between 10 and 60 μm (Figure 1(a)), and the particles dispersed well. The results obtained for the modified biomass ash were markedly different from those obtained for the pure biomass ash with a clear spherical structure. The specific surface area of the modified biomass ash improved, and the surface was more smooth (Figure 1(b)). Moreover, some faint channels were observed, contributing to the improved porosity of the modified biomass ash.

The FTIR spectrum of the modified biomass ash (Figure 1(e)) demonstrates a intense absorption band at 3,330 cm\(^{-1}\); this can be attributed to the O–H bonds of the silanol groups. The other absorption bands were observed at 850 cm\(^{-1}\) and 1,044 cm\(^{-1}\) which correspond to the symmetric and asymmetric Si–O–Si vibrations, respectively. After the functionalization of biomass ash with 10% (w/v) APS and HMS matrix, the spectrum was clearly different, showing a broad signal between 3,000 and 3,600 cm\(^{-1}\) which can be attributed to the improved number of silanol groups that exist in the synthesized material. The stretching bands can be attributed to the N–H group of APS, and the band at 1,488.2 cm\(^{-1}\) corresponds to the bending vibration of the N–H groups (Figure 1(e)) (Pizarro et al. 2015).

Table 2 shows the BET analyzes of the biomass ash and the modified material. The specific surface area of the modified material increased by >9 times compared with which of
the untreated biomass ash, from 21.38 ± 0.17 to 185.81 ± 0.15 m²/g.

Figure 1(b) shows the size and structure of the synthesized materials, and Figure 1(d) shows the elemental composition of the two materials. The elemental composition shows the presence of C, O, Si, N, Al, Fe, and K. Both this analysis and FTIR analysis shows the presence of nitrogen which confirms the biomass ash has been functionalized by the primary amine (APS). Figure 1(b) shows the improved homogeneity of the surface of the modified biomass ash compared with the untreated biomass ash and some regular structure was formed; the specific surface area indicates that a functional mesoporous materials was obtained (Table 2).

Effect of pH

Studies on the use of adsorption in removing heavy metals from aqueous solutions indicate that pH is an important factor (Cao et al. 2016; Madani et al. 2017). The surface of biomass ash has a negative charge, which is transient and significantly depends on the pH of the solution (Cretescu et al. 2015). The adsorption of Cu²⁺ on the modified material was analyzed; Figure 2 shows the effects of different initial pH values on the load capacity (mg/g) for Cu²⁺ of the two materials. The Cu²⁺ adsorption was found to be highly pH-dependent. When pH was less than 4, both of the materials showed a very low adsorption capacity because of the competition between H⁺ and Cu²⁺ for the active adsorption sites on the surface of the adsorbent (Liu et al. 2016), and the adsorption capacity increased sharply when the pH of the solution was increased (Ali et al. 2016).

When the pH in solution is very low, the number of H₃O⁺ exceeded that of the metal ions by many times, and the material surface is almost completely covered by H₃O⁺, which led to the reduction of adsorption capacity for metal ion (Gupta & Bhattacharyya 2008). When pH is gradually increasing, more and more H₃O⁺ are removed from the material surface, thus making the metal ions can be close to the active adsorption sites on the material; this increases the binding of metal ions to the synthesized matrix surface through the mechanism of ion exchange (Gupta & Bhattacharyya 2008). When the pH > 4, the H⁺ concentration is greatly reduced, which is beneficial to the adsorption of metal ion on the surface of the material. This phenomenon can be attributed to the existence of oxides such as SiO₂, Fe₂O₃ and Al₂O₃ and their surface charge depends mainly on the pH in the solution. The
Figure 1 | (a) SEM of biomass ash at 20 keV; magnification 500. (b) SEM of synthesized matrix at 20 keV; magnification 500. (c) EDS analysis of elemental composition of biomass ash. (d) EDS analysis of elemental composition of modified biomass ash. (e) FTIR spectra: (a) biomass ash and (b) synthesized matrix.
exchange mechanism of H\(^+\) and metal ions in solution can be represented by the following equations:

\[
\begin{align*}
\text{XOH} + \text{H}_3\text{O}^+ &\rightarrow \text{XOH}_2 + \text{H}_2\text{O} \\
\text{XOH} + \text{OH}^- &\rightarrow \text{XO}^- + \text{H}_2 \\
2(\text{XO}^-) + \text{M}^{2+} &\rightarrow (\text{XO})_2\text{M}
\end{align*}
\]

\(X: \text{Si, Fe, and Al} \)
\(M: \text{metal}\)

With the increase of pH, the negative charge on the surface of the material is improved, thus improving the electrostatic force between the adsorbent and adsorbate (Ren et al. 2011; Zarime et al. 2014). The maximum adsorption efficiency of Cu\(^{2+}\) on the biomass ash and modified material were observed between pH 5 and 6. When pH > 6, the weak adsorption of Cu\(^{2+}\) can be attributed to the precipitation of Cu\(^{2+}\) species such as carbonates or hydroxides (Figure 2), according to the distribution of metal species effected by pH (Kim et al. 2008).

The modified material was functionalized with NH\(_2\) groups, thus forming an amino-Cu complex with a larger stability constant which can promote the formation of this compound. The stability of the compound mainly depends on the pH which must be near 7 (Walcarius & Mercier 2010; Awual et al. 2014). The adsorption mechanism of Cu\(^{2+}\) on the modified material was mainly dependent on the protonation of N. When pH was less than 3, a large amount of H\(^+\) was present in the solution, the functional groups on the adsorbent surface mainly bind H\(^+\) which made it difficult for Cu\(^{2+}\) to adsorb. The functional groups on the surface of the adsorbent existed in the form of Schiff bases (\(\text{N} = \text{CH}^-\)) when the solution pH was greater than 5, the H\(^+\) react with the lone pair of electrons of nitrogen, thereby preventing the combination of Cu\(^{2+}\) with NH\(_2\) groups.

Adsorption isotherm of synthesized material

Table 3 lists a comparison of the Cu\(^{2+}\) adsorption capacity of several types of adsorbents reported when the pH of the solution is ~5, and the adsorption capacity of the modified biomass ash is better than most other materials. The BET analysis results showed that the specific surface area of the modified biomass ash was greatly improved, which explains the remarkable increase in the adsorption capacity for different initial Cu\(^{2+}\) concentrations. In addition, in order to

<table>
<thead>
<tr>
<th>Absorbent</th>
<th>Adsorption capacity (mg/g)</th>
<th>pH</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synthesized matrix</td>
<td>25.0</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Peanut shell</td>
<td>0.625</td>
<td>5</td>
<td>Shi et al. (2012)</td>
</tr>
<tr>
<td>Banana peel</td>
<td>22.8</td>
<td>5</td>
<td>Jasem (2015)</td>
</tr>
<tr>
<td>Biochar</td>
<td>8.85</td>
<td>5</td>
<td>Adeyemo et al. (2014)</td>
</tr>
<tr>
<td>Coal fly ash</td>
<td>20.9</td>
<td>5</td>
<td>Jasem (2015)</td>
</tr>
<tr>
<td>Bentonite</td>
<td>22.9</td>
<td>5.5</td>
<td>Fan et al. (2013)</td>
</tr>
<tr>
<td>Sepiolite</td>
<td>9.64</td>
<td>5</td>
<td>Dönmez et al. (2015)</td>
</tr>
<tr>
<td>Zeolite</td>
<td>23.0</td>
<td>6.5</td>
<td>Wang et al. (2008)</td>
</tr>
<tr>
<td>Activated carbon</td>
<td>43.3</td>
<td>6</td>
<td>Demiral & Gungör (2016)</td>
</tr>
<tr>
<td>Clays</td>
<td>3–11</td>
<td>5</td>
<td>O’Connell et al. (2008)</td>
</tr>
</tbody>
</table>
describe the characteristics of adsorption process, the Langmuir and Freundlich adsorption models were used to fit the results. The form of Langmuir equation can be expressed as follows (Langmuir 1918):

\[
\frac{C_e}{q_e} = \frac{1}{q_L \cdot K_L} + \frac{C_e}{q_L}
\]

(4)

where \(C_e\) represents the equilibrium concentration of the metal ion (mg/L), \(q_e\) the amount of metal ions adsorbed by a unit mass adsorbent (mg/g), \(q_L\) represents the maximum amount of the metal ion adsorbed by the unit mass adsorbent (mg/g), and \(K_L\) represents the Langmuir constant (L/mg). The Langmuir isotherm is a monolayer model for adsorption, mainly applicable to the adsorption which occurs on the surface of the material. The Freundlich equation can be expressed as follows (Freundlich 1906):

\[
\ln(q_e) = \ln(K_F) + \frac{1}{n} \ln(C_e)
\]

(5)

where \(q_e\) and \(C_e\) are the same as defined above, \(K_F\) (mg/g) \((mg/L)^{1/n}\) and \(n\) are the Freundlich constants which can indicate the adsorption capacity and the adsorption strength of a given material, respectively.

The Freundlich isotherm is a multilayer model, applicable to nonideal sorption on heterogeneous surfaces. The parameters of the two models were obtained by fitting the experimental results. Table 4 shows the fitting results of the parameters of both the models at different temperatures. Both the adsorption models fitted with the experimental data obtained for biomass ash and the synthesized matrix (Table 4); however, the Langmuir model showed a better fit for biomass ash while the Freundlich model showed a better fit for the modified product. This was probably because the adsorption of Cu\(^{2+}\) by biomass ash belonged to monolayer adsorption, thus the fitting of the experimental data was better at every temperature. However, the adsorption of Cu\(^{2+}\) by the modified biomass ash belonged to multilayer adsorption. The functional groups on the surface of the adsorbent existed in the form of Schiff bases (-N = CH-), and the -N = CH- would complex with Cu\(^{2+}\) which lead to the reaction of Cu\(^{2+}\) on the surface of the material was not only the adsorption reaction but also complexation reaction. This might be the reason why the reaction did not fit to the Langmuir model. Moreover, the favorability of adsorption is also very important. In the Freundlich model, the constant \(1/n\) indicates the adsorption intensity; the adsorption progress is a favorable adsorption when the \(n\) values is between 1 and 10 (Bourliva et al. 2013). In our study, the \(n\) values were greater than 3 at every temperature, indicating a favorable adsorption of Cu\(^{2+}\) onto the modified biomass ash (Table 4). The effect of temperature on adsorption showed that with the increase of temperature, the adsorption capacity got a small increase. The possible explanation is that the adsorption process is an endothermic reaction, and the temperature can increase the internal structure of the modified biomass ash (Al-Degs et al. 2012), and the adsorption capacity is enhanced.

Table 4 Values of the constants and fitting of the adjusted adsorption models

<table>
<thead>
<tr>
<th>Adsorbent</th>
<th>Temp (°C)</th>
<th>Langmuir</th>
<th>Freundlich</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(q_L) (mg/g)</td>
<td>(K_L) (L/mg)</td>
</tr>
<tr>
<td>Biomass ash</td>
<td>30</td>
<td>19.82</td>
<td>1.58</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>20.79</td>
<td>1.82</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>21.74</td>
<td>2.09</td>
</tr>
<tr>
<td>Modified biomass ash</td>
<td>30</td>
<td>24.21</td>
<td>6.45</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>24.45</td>
<td>8.35</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>24.51</td>
<td>9.49</td>
</tr>
</tbody>
</table>
J·mol⁻¹·K⁻¹. From the view of thermodynamics, adsorption free energy ΔG is the adsorption driving force, reflects the strength of the driving force for adsorption, which depends on the size of the enthalpy and entropy factors. The negative value of ΔG and the positive value of ΔH and ΔS indicated that the entropy change was the main driving force in the process of adsorption (Table 5). Meanwhile, the negative residual concentration of Cu²⁺ indicated the adsorption process was endothermic, which indicated the adsorption process not only contains physical adsorption, but in one adsorption process, the two effects can occur simultaneously. Generally, physical adsorption force is less than the chemical adsorption force. Chen’s research results showed that when the adsorption force was van Edward force, hydrogen bond, ligand exchange, dipole interaction and chemical bond, the adsorption heat was 4–10, 2–40, ≈40, 2–29 and >60 kJ·mol⁻¹, respectively (Jie et al. 2012). In our study, the $\Delta H > 0$, which indicated the adsorption process was endothermic process. With the increase of temperature, ΔG becomes smaller gradually, and the result showed that the rising temperature was propitious to the adsorption process. Adsorption can be divided into chemical adsorption and physical adsorption, but in one adsorption process, the two effects can occur simultaneously.

Kinetic adsorption studies

Figure 3 shows the adsorption kinetics of Cu²⁺ from solution onto biomass ash and the modified product, residual concentration of Cu²⁺ vs sorption time was illustrated at 30 °C. **Figure 3** indicates that the residual Cu²⁺ concentration reduced sharply during the first 20–30 min and reached a value less than 10 mg/L within 120 min. For biomass ash, however, it took a much longer time to reach equilibrium and the Cu²⁺ concentration was about 5 times that of the modified product in equilibrium. At the initial stages of the reaction, when the active adsorption sites on the material surface were not occupied, the Cu²⁺ can be quickly absorbed onto the surface of the material (Sharma et al. 2017). However, with the adsorption process, the active adsorption sites on the surface of the material were more and more occupied by Cu²⁺ which led to the reduce of unoccupied available sites, thus the sorption rate also decreased rapidly (Ji et al. 2017). The slower diffusion of Cu²⁺ onto the interior matrix of the modified biomass ash may also lead to the slower adsorption rate at this stage (Motsi et al. 2009). In order to analyze the adsorption rate of Cu²⁺ on modified biomass ash, the results of the dynamic analysis were performed by the pseudo-first-order and pseudo-second-order rate equations (Mobasherpour et al. 2014; Nashtifan et al. 2017). The two models can be expressed as follows:

\[
\ln(Q_e - Q_t) = \ln Q_e - k_1 t
\]

(9)

\[
t = \frac{1}{k_2 Q e^2} + \frac{t}{Q e}
\]

(10)

where Q_e is the adsorption capacity (mg·g⁻¹) at equilibrium, Q_t is the amount (mg·g⁻¹) of material adsorbed at time t, k_1 represents the rate constant (min⁻¹) of the pseudo-first-order model, and k_2 is the rate constant (g·mg⁻¹·min⁻¹) of pseudo-second-order model. **Table 6** shows the kinetic parameters.
of the adsorption for Cu$^{2+}$ on the two materials at 30 °C. The values of R^2 was larger than that obtained using the pseudo-second-order model for biomass ash, but the result was quite the opposite for the modified biomass ash. This result also indicated that the adsorption of the modified biomass ash for Cu$^{2+}$ was mainly chemical adsorption. This chemical adsorption process may be caused by the reaction force and the coordination process between the Cu$^{2+}$ and -NH$_2$, -NH- on the surface of the modified material.

CONCLUSIONS

This new material synthesized from biomass ash shows a better adsorption capacity for Cu$^{2+}$ and the capacity mainly depends on the initial metal concentration and the initial pH. Compared to the untreated biomass ash, the modified material shows a much larger specific surface area and a greater number of active adsorption sites because of the functionalization of the mesoporous material with APS. The adsorptions of Cu$^{2+}$ on the modified biomass ash fit the Freundlich well. The adsorption processes is endothermic and follows pseudo-second-order kinetics. Notably, this new material has shown a strong adsorption capacity compared to the reported materials. This study provides a good method for the utilization of biomass ash in the environment.

ACKNOWLEDGEMENTS

The authors acknowledge the financial support for this project by the Chinese Academy of Agricultural Sciences code 2015BAD05B01, National Natural Science Foundation of China (41571461, 41601340), Scientific Research and Service Platform fund of Henan province (2016151) and the fund of the scientific and technological innovation team of water ecological security for water source region of the mid-line of the south-to-north diversion project, Henan province (17454).

REFERENCES

Table 6 | Kinetic parameters for biomass ash and the synthesized matrix

<table>
<thead>
<tr>
<th>Adsorbent</th>
<th>Temp. (°C)</th>
<th>Pseudo-first-order model</th>
<th>Pseudo-second-order model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>k_1 (min$^{-1}$)</td>
<td>R^2</td>
</tr>
<tr>
<td>Biomass ash</td>
<td>30</td>
<td>2.75×10^{-2}</td>
<td>0.945</td>
</tr>
<tr>
<td>Synthesized matrix</td>
<td>30</td>
<td>2.23×10^{-2}</td>
<td>0.496</td>
</tr>
</tbody>
</table>

Seweryn, A. 2012 The identification of the sorption properties of ash from arboreal biomass used to remove biogenic compounds and heavy metal ions from polluted water. *Genome* 45, 1077–1082.

Shen, X., Qiu, G., Yue, C., Min, G. & Mei, Z. 2017 Multiple copper adsorption and regeneration by zeolite 4A synthesized from...

Wang, S., Terdkiatburana, T. & Tad Eacute, M. O. 2008 Adsorption of Cu(II), Pb(II) and humic acid on natural zeolite tuff in single and binary systems. *Separation & Purification Technology* 62, 64–70.

