Phylogenomic analysis expands the known repertoire of single-stranded DNA viruses in benthic zones of the South Indian Ocean

Running title: single stranded DNA viruses in the deep ocean

Oliver K.I. Bezuidt1,2,* and Thulani P. Makhalanyane2,3 #

Affiliations:
1. DSI/NRF South African Research Chair in Marine Microbiomics, Department of Biochemistry, Genetics and Microbiology, microbiome@UP, University of Pretoria, Pretoria, 0028, South Africa
2. Department of Microbiology, Faculty of Science, Stellenbosch University, Stellenbosch, 7600, South Africa
3. Centre for Epidemic Response and Innovation, The School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, 7600, South Africa

Address correspondence to:
*Dr. Oliver K.I. Bezuidt, DSI/NRF SARCHi Chair in Marine Microbiomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, Pretoria, 0028, South Africa, Phone: +27 (0) 12 420 6976, Email: bezuidt@gmail.com #Prof. Thulani P. Makhalanyane, Department of Microbiology, Stellenbosch University, Stellenbosch, 7600, South Africa, Phone: +27 (0) 21 808 5854, Email: tpm@sun.ac.za

© The Author(s) [2024]. Published by Oxford University Press on behalf of the International Society for Microbial Ecology
Abstract

Single-stranded (ss) DNA viruses are ubiquitous and constitute some of the most diverse entities on Earth. Most studies have focused on ssDNA viruses from terrestrial environments resulting in a significant deficit in benthic ecosystems including aphotic zones of the South Indian Ocean (SIO). Here, we assess the diversity and phylogeny of ssDNA in deep waters of the SIO using a combination of established viral taxonomy tools and a Hidden Markov Model based approach. Replication initiator protein-associated (Rep) phylogenetic reconstruction and sequence similarity networks (SSN) were used to show that the SIO hosts divergent and as yet unknown circular Rep-encoding ssDNA (CRESS-DNA) viruses. Several sequences appear to represent entirely novel families, expanding the repertoire of known ssDNA viruses. Results suggest that a small proportion of these viruses may be circular genetic elements, which may strongly influence the diversity of both eukaryotes and prokaryotes in the SIO. Taken together, our data show that the SIO harbours a diverse assortment of previously unknown ssDNA viruses. Due to their potential to infect a variety of hosts, these viruses may be crucial for marine nutrient recycling through their influence of the biological carbon pump.

Keywords: biogeochemical cycling, CRESS-DNA, single stranded DNA viruses, Rep and Capsid proteins, South Indian Ocean, viral diversity
Introduction

Disentangling the phylogenetically diverse assemblages of bacteria, fungi, phytoplankton and viruses and their contributions to ecosystem services in the global ocean remains a major endeavour. There is strong evidence that these assemblages influence the biological carbon pump in marine environments (Castillo et al 2022, Fuhrman et al 2015). Among these assemblages, viruses are the most numerically abundant (Falkowski et al 2008), and recent evidence has demonstrated their profound influence on prokaryotic lifestyles in the oceans (Dominguez-Huerta et al 2022, Gaïa et al 2023, Maidanik et al 2022, Wicaksono et al 2023, Zayed et al 2022). These studies have shown that viruses play key roles in determining ecological patterns in marine ecosystems and mediating nutrient recycling through the transfer of genes between both eukaryotic and prokaryotic hosts (Ha et al 2023, Mayers et al 2023, Zimmerman et al 2020). Through lysogeny, viruses enhance the release of organic matter, promoting the recycling of nutrients such as dissolved organic carbon (DOC), through the microbial loop (Fuhrman 1999). While there are increased insights regarding viral contributions, most studies have focused on limited geographic locations. As a result, comparatively less is known regarding the phylogeny and function of single- and double-stranded DNA viruses in large regions of the global ocean.

An accumulating body of research suggests that viruses are central drivers of metabolic processes through auxiliary metabolic genes (AMGs) (Luo et al 2022b, Yi et al 2023, Zhou et al 2023). Previous studies have also shown that double stranded (dsDNA) viruses mediate key metabolic processes, known to modulate microbial metabolic pathways during infection (Ahlgren et al 2019, Hurwitz et al 2013, Roux et al 2016a, Wittmers et al 2022). Most studies on viral diversity and functional contributions have been derived from studies conducted mostly in euphotic oceanic zones (Brum et al 2015, Chow and Suttle 2015, Luo et al 2020b, Sussman et al 1998, Zimmerman et al 2020). This has resulted in a substantial knowledge gap regarding the evolutionary structure and function of viruses in benthic ecosystems. Current studies on benthic ecosystems have, however, provided several insights regarding the diverse dsDNA prokaryotic viruses and their encoded
AMGs (Gao et al 2022, Li et al 2021, Pratama et al 2021, Rambo et al 2022, Suter et al 2021), and less on assemblages and potential functional contributions of ssDNA viruses. More recently, uncharacterized groups of ssDNA viruses associated with vertebrates from terrestrial environments have become the subject of extensive research (Capozza et al 2022, Hillary et al 2022, Jansson and Wu 2023, Porter et al 2019, Reavy et al 2015, Tisza et al 2020). Although these studies have provided substantial insights regarding the diversity and versatility of ssDNA, the results have led to an overrepresentation of virus sequences from several habitats including terrestrial ecosystems and mammal derived samples (Mahmoudabadi and Phillips 2018, Rosario et al 2009, Shkoporov et al 2022). Several studies have noted the lower proportion of studies on ssDNA viruses in marine ecosystems (Angly et al 2006, Labonte and Suttle 2013, Rosario et al 2009). Given the importance of viruses as mediators of the biological carbon pump, the lack of studies on ssDNA viruses may limit our understanding regarding their functional contributions. The diversity and functional contributions of ssDNA in the oceans may substantially contribute to marine nutrient recycling and the biological carbon pump.

Previous studies on viral communities in benthic zones have demonstrated that ssDNA viruses constitute dominant constituents of these environments (Cheng et al 2022, Yoshida et al 2013). However, to the best of our knowledge, the evolutionary relationships, diversity, and distribution of ssDNA viruses in the SIO remains unexplored. We predict that the distinct environmental conditions and water masses in the SIO may select for phylogenetically diverse ssDNA viruses. Here, we explore the diversity and phylogeny of ssDNA from benthic zones of the SIO. In addition to using conventional approaches to search for putative viral contigs, we applied a hidden Markov model (HMM) workflow to expand the current repertoire of ssDNA viruses.

Materials and methods

Sample collection and molecular ecological analyses

Seawater samples were collected aboard the RV SA Agulhas II from the Crossroads transect in the South Indian and Southern Oceans as detailed previously (Phoma and Makhalanyane 2021, Phoma et al 2018). As part of the cruise, 39 samples (13 x 3) were
collected across a 1000 km transect. At each site, three samples were collected from the deepest depth (Table S1). A Sea-Bird SBE-911plus V2 CTD System (Sea-Bird Electronics, Inc., Bellevue, Washington, USA) was used to collect samples approximately 10 m above the seafloor. Depending on the conditions, the CTD was retrieved within 5 hours. Once on deck, 5 L of seawater was retrieved from each of the three Niskin bottles and subjected to a two-step filtration process to allow for the collection of particle-associated viruses (hereinafter referred to as viruses), potential symbionts including candidate phyla radiation, and free-living microbial biomass. Following filtration, all samples were immediately stored at -25°C until processing.

DNA was extracted from membrane filters using a phenol-chloroform method (Miller et al. 1999) with extractions performed in duplicate, with minor modifications. Specifically, the pH of the extraction buffer was adjusted from 8 to 9.5 to compensate for low DNA concentration. Using sterile forceps, both 0.45 µm and 0.2 µm membrane filters were cut in half and used as the samples in the protocol, and as a result the number of glass beads used in the protocol was lowered from 0.4 - 0.5 mL to 0.25 mL (0.10 - 0.11 mm diameter). Samples with the highest DNA concentration (n=6) were sent for sequencing at the Molecular Research DNA (MR DNA) sequencing facility (Shallowater, Texas, USA). These 6 samples are pseudo replicates from same sampling sites as indicated in Table S1 (CR11, CR12 for CR1; CR21, CR22 for CR9; and CR31, CR32 for CR10). Due to generally low DNA yields, whole metagenome amplification was performed using REPLI-g Midi kit (Qiagen, Hilden, Germany). Libraries were prepared using the Nextera DNA Sample preparation kit (Illumina, Inc., San Diego, CA) with a small insert size (<1 kbp). The final libraries were then pooled and sequenced as paired end reads for 300 cycles, using the Illumina HiSeq 2500 system (Illumina, Inc. San Diego, CA, USA).

Bioinformatics analysis
Shotgun metagenome analysis and processing
Raw metagenomic reads were inspected for quality, and the presence of sequencing adapters, using FastQC (www.bioinformatics.babraham.ac.uk/projects/fastqc). Following this, the reads were processed using BBsplit version 38.00 to remove PhiX174...
(CP004084.1) using default settings. The resultant PhiX174 free reads were further trimmed using Trimmomatic version 0.36 (Bolger et al 2014). The total sequencing coverage was estimated using Nonpareil version 3.301 (Rodriguez et al 2018) (Figure S1). We assembled the metagenomes using metaSPAdes version 3.14.1 as detailed previously (Nurk et al 2017) following default parameters. All contigs below 1000 bp were removed and the remaining high-quality sequences were used for downstream analyses.

Bacterial taxonomic classification and functional annotation
To estimate the distribution and taxonomy of the taxa recovered from the metagenomes, contigs were aligned against a non-redundant (NR) protein database from the National Center for Biotechnology Information (NCBI) database (Sayers et al 2022a). We used DIAMOND BLASTx version 2.02.2 with the default settings (Buchfink et al 2015). The outputs were analysed using MEGAN version 6.20.19 (Huson et al 2016) to estimate taxonomic distributions and determine overrepresented taxa across all metagenomes. Contigs for the top 5 most represented taxa were extracted and analysed using Kofamscan version 1.3.0 to determine their metabolic potential with the default settings (Aramaki et al 2020).

Viral prediction and quality processing
To assess the distribution and classification, two approaches (detailed below) were used to predict viruses. For the first approach, we used standard viral prediction pipelines, whereas the second relied on the use of a HMM based approach (Eddy 2011).

Approach 1: All 6 assembled metagenomes were used to search for putative viral contigs using a combination of Virsorter version 2.2.3 (Guo et al 2021) and VirFinder version 1.1 (Ren et al 2017). Contigs with sizes >=1kb, predicted using both Virsorter2 version 3 SOP (dx.doi.org/10.17504/protocols.io.bwm5pc86), as well as those predicted to have P-value < 0.01 by VirFinder, were retained and merged for downstream analyses. These merged contigs were clustered into viral operational taxonomic units (vOTUs) using CD-HIT version 4.8.1 (Li and Godzik 2006), based on 95% sequence identity over 80% of the shortest contig. The resultant vOTUs contig were processed using CheckV
version 0.70 (Nayfach et al 2021b) to estimate overall quality and completeness
(Supplementary Tables S2 and S3). Putative viral contigs, that were designated as
complete, high, medium, and low were retained. These contigs were post-processed
using the geNomad pipeline version 1.6.1 (Camargo et al 2023) with the default
parameters. Contigs that were classified as affiliated with the class Caudoviricetes and
order Petitvirales were assessed for the presence of auxiliary metabolic genes using
VIBRANT version 1.2.1 (Kieft et al 2020), with the default specifications. The lifecycles
associated with these putative viruses were determined using BACPHLIP (Hockenberry
and Wilke 2021) with the default settings. Lytic/virulent phages were identified with a
minimum lifecycle prediction score of >=0.8. Following this, we inspected a set of putative
ssDNA-specific viruses. Contigs (>=1kb) predicted as ssDNA viruses by Virsorter version
2.2.3 were retained. These contigs were further clustered into viral OTUs using CD-HIT
version 4.8.1 and further estimated for quality and completeness as detailed earlier. We
retained contigs designated as complete, high, medium, and low quality. These putative
virus predictions were validated using BLASTp (Altschul et al 1990) with e-value 1e-05,
against the NR protein database from the NCBI (accessed January 2023) (Sayers et al
2022b).

Approach 2: To generate HMM-based profiles, we retrieved all Cressdnaviricota
and Phixviricota protein sequences from GenBank (Sayers et al 2022b),
(https://github.com/SAmicrobiomes/ssDNA). To reduce redundancy, these sequences
were clustered at 95% amino acid identity over 90% of the shortest sequence, using CD-
HIT version 4.8.1 (Li and Godzik 2006). The resultant sequences were compared, using
all-vs-all BLASTp with e-value 1e-5. The output sequences were further clustered, using
Markov cluster (MCL) algorithm (Enright et al 2002) with the inflation parameter set to
1.5. Clusters with proteins >= 10 annotated replication initiator (Rep) and major capsid
(VP1) were aligned using MAFFT version 7.487 (Katoh and Standley 2013) with the --auto parameter. The alignments were used to create HMM profiles, using HMMER
version 3.3.2 (Eddy 2011). The profiles were searched against protein sequences, which
were predicted using the -p meta function in Prodigal (Hyatt et al 2010), from all
metagenomes using HMMSCAN version 3.0 (Potter et al 2018). Metagenomic
sequences, that shared similarity with conserved Cressdnaviricota replication initiator (Rep) and Phixviricota major capsid (VP1) proteins, with HMMSCAN scores \(\geq 50 \) were retrieved for downstream analysis. Viral contigs, predicted to harbour Rep and VP1 proteins, were validated using BLASTp (Altschul et al 1990) with e-value 1e-05 against a non-redundant (NR) database acquired from the NCBI as well as HHpred (Söding et al 2005) against the Protein Data Bank (PDB) and Protein Family Database (Pfam) database.

Phylogenetic analysis of single stranded DNA viruses

Complete Rep and VP1 protein sequences, from both our metagenomes and GenBank viral datasets, were used to reconstruct phylogenies based on conserved amino acid sequences. Rep proteins, predicted from our metagenomes, were compared with those from ssDNA viruses and plasmid sequences from previous studies (Kazlauskas et al 2019). These protein sequences were aligned using MAFFT-linsi and trimmed using Trimal with gap threshold 0.15 (Capella-Gutiérrez et al 2009). Phylogenetic trees were computed using FastTree with options -spr 4 -mlacc 2 -slownni -lg (Price et al 2010).

Results and Discussion

Diverse putative hosts dominated by prokaryotes

Viruses are crucial for the biological carbon pump and regulate microbial community structure and abundance, determining the genetic diversity and evolution of their hosts (Chevallereau et al 2022, Knowles et al 2020, Suttle 2007, Weinbauer and Rassoulzadegan 2004, Zhang et al 2020). In turn, there is some evidence that marine viruses co-exist with potential hosts, which include phylogenetically diverse eukaryotes and prokaryotes (Coutinho et al 2017, Knowles et al 2020, Luo et al 2020a, Rohwer and Thurber 2009, Wang et al 2011). For instance, previous studies have shown that eukaryotic hosts include copepods (Dunlap et al 2013) and protists (Yoon et al 2011). However, the diversity of potential hosts in understudied environments such as the SIO remains unknown.
Our dataset provides an overview of the taxonomy of bacterial, archaeal, and eukaryotic hosts in benthic zones of the SIO. The data suggest that bacteria and archaea may be the dominant hosts, compared with eukaryotes which constituted a minor fraction of our sequences (Figure 1A). This finding is consistent with previous studies, which have demonstrated that prokaryotes far outnumber eukaryotes in all ecosystems (Brueckner and Martin 2020, Dominguez-Huerta et al 2022, Guerrero et al 2017, Schleifer 2004, Vikram et al 2016). Taxonomic classifications suggest that three bacterial (Proteobacteria, Candidatus Marinimicrobia and Bacteroidota) and one archaeal (Thaumarchaeota) phyla were the most overrepresented in the benthic SIO (Figure 1B). Other studies on the diversity and distribution of marine microbiota in aphotic zones have reported similar findings (Aylward and Santoro 2020, Bertagnolli et al 2017, Zhang et al 2016). Some of these taxa constitute ecologically rare taxa, that may represent active free-living bathypelagic microbiota (Sebastián et al 2024) and may disproportionately contribute to the sequestration of key nutrients.

Although sequences affiliated with Eukaryota were present at comparatively low abundances, several taxa including Chlorophyta, Streptophyta, Foraminifera, Ascomycota, and members of the ecologically diverse SAR supergroup were found (Supplementary Figure S2). These taxa may have originated from deep-sea floor unicellular and multicellular species. We argue that some of these species may host eukaryotic ssDNA viruses found in our dataset. Our results are consistent with previous studies, which reported generally low abundances of eukaryotes in other benthic environments such as the Black Sea (Schippers et al 2012). Based on their relatively high abundances, we predict that prokaryotes may be the primary hosts of marine viruses, which ultimately mediate important functional processes in the SIO.

Widespread functional capacity in diverse prokaryotic hosts

To reduce the knowledge deficit regarding contributions to ecosystem services, we determined functional capacity and putative ecological contributions of bacteria and archaea in the SIO. Metabolic analysis revealed a suite of complete pathways linked to carbon degradation, nitrogen, methanogenesis, and sulphur recycling (Figure 2A). In addition to providing the first such data for this region, the results are consistent with
recent findings showing that deep oceans possess remarkably diverse capacity for functional processes (Acinas et al 2021, De Corte et al 2021, Paoli et al 2022, Zhou et al 2020). Linking these functional genes to microorganisms suggests that some taxa may exclusively drive specific metabolic processes. For instance, Proteobacteria appear to be the only taxa with metabolic capacity for methanogenesis, suggesting that they may contribute to oxidizing methane in the deep environments (Guan et al 2015, Newberry et al 2004). This result suggests that these numerically dominant taxa may mediate key ecosystem processes in the SIO. Results from functional analysis suggests that some metabolic roles may be driven by a consortia rather than one numerically abundant microorganism. For instance, genes for sulphur metabolism were found in sequences affiliated with Candidatus Marinimicrobia, Proteobacteria and Thaumarchaeota. Among these, ammonia oxidizing Thaumarchaeota appear to be the only taxa, with a complete pathway for dissimilatory sulfate reduction and sulphide oxidation. This result suggests that these Thaumarchaeota may play especially important roles in sulphur recycling (Kajale et al 2021, Liu et al 2012). This observation also suggests that, in addition to other groups associated with marine and terrestrial environments (i.e., Euryarchaeota, Crenarchaeota, and Aigarchaeota) (Anantharaman et al 2018), Thaumarchaeota may augment the metabolic contributions of candidate sulfate-reducing archaea. Collectively, the detection of these genes provides some indication of the metabolic capacity in aphotic SIO waters, which may influence important ecological processes.

Evidence of extensive viral diversity and functional potential in the deep South Indian Ocean

Despite the importance of the SIO in modulating global climate and heat uptake in the ocean (Castillo et al 2022, Phoma and Makhalanyane 2021, Yang et al 2020), we lack taxonomic insights regarding the functional roles of viruses. Using two of the most widely used pipelines (Ren et al 2017, Roux et al 2015), we explored viral communities in deep SIO waters. Viral predictions were combined, checked for quality and completeness, and clustered into 3076 putative viral OTUs. In total, 1427 (46.4%) of these vOTUs were classified into known prokaryotic viral taxa. These viruses included members of the class Caudoviricetes (991), which included families Straboviridae (n=3), Kyanoviridae (n=2),
Autographiviridae (n=1), Herelleviridae (n=1). In addition, several sequences were affiliated with taxa from the order Petitvirales (436), including members of the Microviridae (n=406) family.

Only a small fraction of the total vOTUs appear to harbour AMGs. From 62 vOTUs, we identified 78 AMGs (Supplementary Table S4). These AMGs were mostly associated with functional traits related to the synthesis of amino acids, carbohydrates, secondary metabolites as well as terpenoids/polyketides metabolic pathways (Supplementary Table S5). Several of these AMGs related to amino acid metabolism included 2OG-Fe(II) oxygenases (Arginine and proline metabolism). Previous studies suggest that these AMGs may modulate host nitrogen metabolism, stress response, and DNA repair mechanisms (Focardi et al 2020, Roux et al 2014, Sullivan et al 2010). Some of the genes linked to these AMGs are involved in the metabolism of cysteine and methionine, linked to carbon, nitrogen and sulphur utilization, and the reprogramming of cells to anabolic states (Walvekar et al 2018). The presence of viral AMGs, previously implicated in sulphur metabolisms (i.e dcm, cysH, metK) (Kieft et al 2021), correlates with the most complete pathways in our datasets. These pathways were linked to the 4 most overrepresented phyla in our metagenomes. Genetic evidence suggests that viruses may contribute substantially to bacterial metabolic reprogramming in deep SIO waters (Luo et al 2022a).

Determining the lifecycles of Caudoviricetes found in the SIO suggests that these viruses may favour lytic (n=948) over lysogenic (n=14) cycles. This is consistent with previous reports of high prokaryotic mortality due to viral lysis in the dark ocean (Lara et al 2017). The study by Lara et al (2017) further suggests that a preference for viral lytic cycles may result in the production of dissolved organic carbon, supporting respiration in the dark ocean (Aristegui et al 2002). To estimate the diversity of our Caudoviricetes, we clustered all 991 representative contigs against viral RefSeq database (release 219) using 95% ANI across 85% of the sequence using a method detailed previously (Nayfach et al 2021a). However, none of our contigs clustered with any of the viruses from the reference dataset, suggesting that the deep SIO hosts potentially novel dsDNA viruses.
To explore the diversity of eukaryotic DNA viruses in our dataset, a set of putative viral contigs highlighted as ssDNA by Virsorter 2.2.3 were retained (Guo et al. 2021). These were clustered into 7627 viral OTUs. Of these, 6018 vOTUs were validly assigned and predicted to be complete (24), high (1559), medium (2146) and low (2289) quality. Sequence similarity searches, using these assigned contigs, were used to estimate the diversity of ssDNA viruses. A total of 3440 contigs, with blast descriptions containing the terms circo, CRESS, circular genetic, circular virus/DNA, and which either possessed or lacked replication initiator proteins, were classified as rep-encoding ssDNA viruses. Among these, 150 contigs were classified as Microviridae, in addition to 810 other contigs associated with dsDNA phages. These numbers suggest a high proportion of false positive predictions (Table S6).

Uncharacterized Circular Rep-Encoding ssDNA sequences dominate deep South Indian Ocean waters

Due to inherent methodological differences, current in silico approaches may yield contrasting results regarding viral divisions. While previous studies have revealed a diverse array of viruses (Gregory et al. 2019, Li et al. 2021), sequence classification using standard approaches leads to false positive predictions of prokaryotic ssDNA viruses (Bi et al. 2022, Khot et al. 2020). A consequence of these false positive annotations may be the assignment of dsDNA viral contigs as ssDNA. To avoid this common issue, we used a Hidden Markov Model (HMM) based pipeline described previously (Eddy 2011) to investigate the diversity of Microviruses and Circular Rep-Encoding ssDNA (CRESS) viruses, in the SIO (Figure 2B). Using this approach, we established HMM profiles for conserved Rep and VP1 proteins from Cressnaviricota and Phixviricota viral sequences retrieved from GenBank (Benson et al. 2013). Based on these profiles, HMM searches across all metagenomes, revealed 3260 and 344 putative Rep and VP1 complete protein sequences, respectively. To reduce redundancy, these sequences were subsequently clustered (at >= 95% amino acid identity, over 85% of the shortest sequence), resulting in 2307 (Rep) and 209 (VP1) representative protein sequences. The validation of these hallmark sequences, against a non-viral specific database such as NR, suggests that 2303 and 209 of Rep and VP1 sequences shared sequence similarities with both rep-
encoding viruses and Microviridae, respectively. The remaining 4 Rep sequences, without hits against NR database, were further validated using HHpred against PDB and pfam databases (Table S7 and S8).

To reduce the knowledge deficit regarding these viruses, we estimated the diversity and phylogeny of CRESS sequences from the SIO. Phylogenetic analysis was used to compare 2307 Rep sequences with the 709 reported by Kazlauskas et. al (2019) (Figure 3). Our maximum likelihood reconstructions suggest that sequences from the SIO may represent unclassified CRESS. These sequences were predominantly assigned with categorical Groups 1-5 as well as Circoviridae, which are known to infect a wide range of hosts including mammals and diatoms (Delwart and Li 2012, Khalifeh et al 2021, Shi et al 2020). Consistent with previous studies (Chrzastek et al 2021, Yoshida et al 2013), these viruses were highly abundant in our samples. It is possible that these viruses may interact with phylogenetically diverse eukaryotic hosts. These hosts may include members of the division Chlorophyta and Streptophyta, Foraminifera, Ascomycota and the prevalent SAR supergroup (Figure S2). Our phylogenetic analysis revealed distinct unclassified clades, including C1 which appears to be comprised exclusively by viruses from the SIO (Figure 4). These distinct clades expand the known diversity of marine viruses. In addition, sequences from the SIO include clades representing several as yet unidentified rep-encoding CRESS viruses. The data strongly suggests that these viruses may have a broader host range preference than previously thought. In addition, the may the environmental conditions in these deep SIO waters may select for distinct CRESS viruses adapted to these harsh conditions. The analyses further revealed that one sequence clustered with PCRESS8 and three grouped with Genomoviruses which are known plasmids and fungal pathogens, respectively (Hao et al 2021, Tarasova and Khayat 2021).

To explore the diversity of ssDNA viruses 2307 (Rep) and 209 (VP1) non-redundant proteins, recovered in this study, were compared with GenBank Rep and VP1 protein sequences. These sequences were used to generate the HMM profiles using 'all vs all BLASTp with e-values <= 1e-60. These sequences were used to generate family-level
clusters of sequence similarity networks (SSNs), as described previously by Kraberger et al (2019). These SSNs included 87.1% Rep (2010) and 98.5% VP1 (206) of ssDNA protein sequences from the SIO dataset. Consistent with the phylogenetic analysis, SSNs generated by comparisons of Cressnaviricota Rep proteins showed that at least 89% (1792 of 2010) of the Rep sequences from our dataset, clustered with Circoviruses and unclassified CRESS viruses (Figure 4). The SSNs also suggests that several sequences from our data represent distinct clusters, which were not similar to those deposited on GenBank. These divergent clusters (C2 and C3) overlapped with the distinct CRESS like viral C1 clade in the phylogenetic tree. In addition to confirming some overlap between the two methods, this result highlights the high diversity of ssDNA viruses in deep SIO waters (Figure 4).

Contrary to CRESS signatures, HMM searches suggest that the numbers of Phixviricota-like VP1 protein sequences in the SIO may be low. Additionally, Phixviricota VP1-based SSN indicated that prokaryotic viral sequences from the SIO may be similar with known Microviruses (Figure S3). This result is somewhat surprising and is in contrast to previous studies, which have reported that Microviruses from benthic marine environments were highly abundant and diverse, compared with other viruses from the same family (Yoshida et al 2018). Based on our findings, we propose two possibilities. The first is that benthic Microviruses from the SIO may be less divergent due to the ecological selective pressures. Alternatively, the underrepresentation of these viruses in our data may be due to technical challenges. For instance, amplification biases during library preparation have been previously shown to obscure viral abundances in several studies (Martinez-Hernandez et al 2017, Roux et al 2016b). However, based on the remarkably low number of studies on the SIO, and the limited datasets, it is reasonable to conclude that these viruses may represent highly diverse and novel lineages. Validation of metagenomic assemblies supports this assertion and revealed that 2590 contigs from our dataset may be associated with circular genetic elements, which were previously described by Tizsa et al (2020). SSNs indicated that 12 and 4 clusters (of the total 161, with cluster sizes >=5) were constituted by ssDNA viral Rep and Capsid associated proteins, respectively (Figure S4). This result suggest that the diversity of ssDNA viruses in the SIO may be as
similar to levels previously reported in the North Atlantic Ocean (Tucker et al 2011) and other polar aquatic environments (Yau and Seth-Pasricha 2019).

Taken together, the diverse ssDNA viruses identified in this study suggests that the relationships between virus and host populations may be dynamic or substantially driven by physicochemical properties in the deep SIO (Reavy et al 2015). However, the functional potential of eukaryotic viruses in the environment remains under-explored. Our results showing high abundances of Cressdnaviricota suggests that these viruses contribute significantly to the biological carbon pump in the SIO. Alternately, based on the phylogenetic evidence from our study it is reasonable to predict that viruses may have profound effects on ecological processes across the water column, from the surface to the deepest depths. These effects may include recycling dissolved inorganic carbon in aphotic zones. However, studies deploying a marine snow catcher are required to confirm the role played by viruses in suspended and sinking particulate matter in the SIO. Given the importance of the SIO in global climate and nutrient circulation, these studies may shed light on the influence of these viruses on nutrient recycling of carbon and nitrogen.

Acknowledgements
We wish to thank the National Research Foundation of South Africa and the South African National Antarctic Program for supporting our work (UID 110717). The project also received funding from the European Union’s Horizon 2020 research and innovation programme as part of the AtlantECO project under grant agreement No 862923. We wish to acknowledge the Technology Innovation Agency for supporting the sequencing costs.

Competing Interests
All authors declare that they have no competing interests.
Data availability statement

Raw sequence data linked to study have been deposited to the NCBI SRA under accession number PRJNA894371. Supplemental materials are available on the following link: https://doi.org/10.6084/m9.figshare.24032697.

References

Aylward FO, Santoro AE (2020). Heterotrophic Thaumarchaea with Small Genomes Are Widespread in the Dark Ocean. mSystems 5.

Labonte JM, Suttle CA (2013). Previously unknown and highly divergent ssDNA viruses populate the oceans. ISME J 7: 2169-2177.

Wittmers F, Needham DM, Hehenberger E, Giovannoni SJ, Worden AZ (2022). Genomes from Uncultivated Pelagiphages Reveal Multiple Phylogenetic Clades Exhibiting...

Figure 1 (A) A map showing the six sampling locations in the South Indian Ocean. The map also includes an overview of microbial diversity (pie charts) at each sampling location. (B) Bar plots showing the relative abundances of bacterial and archaeal classes, at each sampling site.
Figure 2 (A) Heatmap showing the metabolic potential of the four most overrepresented taxa, at each site. The plot shows the (B) An overview of the methodological workflow followed in this study including sample processing and Hidden Markov Model (HMM) construction and data analysis.
Figure 3 An unrooted maximum likelihood phylogenetic tree showing the diversity of Rep protein sequences. The black squares represent Rep proteins, from the South Indian Ocean, and CRESS DNA viruses. The other groups shown include Rep proteins retrieved from a previous study by Kazlauskas and colleagues (2019).
Figure 4 An unrooted maximum likelihood phylogenetic tree (A) and a sequence similarity network of Rep protein sequences indicating some of the potentially novel CRESS viral families (B) from our South Indian Ocean data, annotated as C1 to C3.