Late-Onset MELAS Syndrome in a 46-Year-Old Man with Initial Symptom of Chest Tightness: A Case Report

Ai Wang¹, Ji Zhao¹, Yun Zhao², Yan Yan¹

¹Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China;
²Department of Cardiovascular Surgery, Shanghai Geriatric Medical Center, Shanghai 201104, China;

Correspondence

Yan Yan, PHD&MD
Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China.

Email: yan.yan@zhongshan-hospital.sh.cn.

Abstract

Background MELAS (Mitochondrial Encephalomyopathy, Lactic Acidosis, and Stroke-like episodes) syndrome is a rare mitochondrial disorder caused by mutations in mitochondrial DNA, resulting in impaired energy production and affecting multiple organs. We present a suspected MELAS syndrome case with the initial symptom of chest tightness.
Case summary A 46-year-old man sought medical attention due to progressively worsening chest tightness during physical activity. He had been receiving treatment for type 2 diabetes for 15 years. One year ago, he presented with symptoms of hearing impairment. Transthoracic echocardiography revealed increased thickness of the left ventricular wall. Serum protein electrophoresis showed no evidence of light-chain amyloidosis, and the 99mTc-3,3-diphosphono-1,2-propanodicarboxylic acid scan showed no definite uptake in the heart muscle. The patient's head Magnetic Resonance Imaging (MRI) indicated lacunar infarcts. The lactate threshold test was positive. The biopsy of the skeletal muscle showed broken red fiber infiltration on modified Gomori trichrome staining, and electron microscopy revealed signs of mitochondrial cardiomyopathy, including mild mitochondrial swelling, lipid accumulation, and myofibril damage. A whole-exome genetic test was used to detect the m.3243A>G mutation in the MT-TL1 gene. Based on these findings, MELAS syndrome was the most probable diagnosis.

Discussion The patient presented with chest tightness in adulthood, without any accompanying psychoneurological symptoms. However, the patient presented with other symptoms, including diabetes mellitus, hearing loss, abnormal lactate levels, ischemic lesions on head MRI, and left ventricular hypertrophy. By identifying a mutation in the MT-TL1 gene and conducting a muscle biopsy, the diagnosis of MELAS syndrome was definitively confirmed.

Key words Cardiomyopathy; MELAS syndrome; Mitochondrial disease; Case report
Funding

This work was supported by the National Natural Science Foundation of China (grants 81873538 and 82070463).

Author contributions

Ai Wang collected the case history and composed the manuscript. Ji Zhao and Yun Zhao were in charge of all the clinical data analysis, gene analysis, and imaging. Yan Yan revised the manuscript prior to submission. All authors contributed to the article and approved the submitted version.
1. Not all MELAS (Mitochondrial Encephalomyopathy, Lactic Acidosis, and Stroke-like episodes) patients exhibit psychiatric symptoms. Endomyocardial biopsy and genetic testing can be useful in differentiating cases of idiopathic cardiomyopathy.

2. It should be noted that some drugs such as metformin, phenobarbital, and statins may affect mitochondrial function, and their use needs to be carefully evaluated.

Timeline

<table>
<thead>
<tr>
<th>Time Point</th>
<th>Clinical Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>-15 years</td>
<td>Diagnosed with type 2 diabetes.</td>
</tr>
<tr>
<td>-2 years</td>
<td>Exertional chest tightness began.</td>
</tr>
<tr>
<td>-1 year</td>
<td>Onset of bilateral auditory impairment.</td>
</tr>
<tr>
<td>-6 months</td>
<td>Exertional angina worsened.</td>
</tr>
<tr>
<td>0 month</td>
<td>Visited the Cardiovascular Department outpatient clinic. Conducted examinations, including muscle biopsy and whole-exome sequencing.</td>
</tr>
<tr>
<td>2 months</td>
<td>Diagnosis of MELAS syndrome and discharge.</td>
</tr>
<tr>
<td>6 months</td>
<td>Improvement in chest discomfort and hearing impairment.</td>
</tr>
</tbody>
</table>

Introduction

MELAS (Mitochondrial Encephalomyopathy, Lactic Acidosis, and Stroke-like episodes) syndrome is a mitochondrial disorder caused by mtDNA mutations that affects energy metabolism and oxidative phosphorylation\(^1\). Symptoms vary and can include epilepsy, intellectual disability, dementia, hemiparesis, blindness, hearing impairment, and heart conduction block\(^2\). Diagnosis is based on clinical symptoms, histological findings, and genetic testing. We present a case of a 46-year-old man with chest tightness who was...
diagnosed with MELAS syndrome based on a musculus gastrocnemius biopsy and whole exome sequencing, despite the absence of neurological symptoms.

Case presentation

A 46-year-old man was referred to a clinic for chest discomfort. He has been experiencing exertional chest tightness for 2 years, which has gradually become more severe in the past 6 months. Prior to his clinic visit, he had been taking aspirin, clopidogrel, atorvastatin, metoprolol, metformin, and insulin. The tightness in his chest has deteriorated over the last two months, and he presently encounters breathlessness even after walking a mere 20 meters. He had been receiving treatment for type 2 diabetes for 15 years. He has no history of hypertension, smoking or drinking. The man is married and has two daughters, and there is no family history of cardiac disease. He has no history of surgery or trauma. On physical examination, his blood pressure was 102/66 mmHg, and his pulse rate was 77 bpm. No abnormalities were observed, and there was no Jugular-Venous Distension. A regular heart beat without a murmur or extra heart beat was observed, and his lung sounds were clear. No leg edema was observed. The patient had two instances of abnormally elevated cardiac troponin I (cTNI) levels with experiencing apparent chest pain (cTNI=0.086 ng/ml; reference range, <0.03 ng/ml). The patient’s red blood cell (RBC) count and hemoglobin (HGB) levels were within the normal range (RBC 4.55*10^12/L; reference range, 4.30-5.80×10^12/L; HGB 134 g/L; reference range, 130-175 g/L), and his electrolyte, renal, and liver functions
were normal. His glucose, HBA1C, and glycated albumin levels were also normal.

However, the patient's N-terminal pro-B-type natriuretic peptide (115 pg/ml; reference range, 0–100 pg/ml) and troponin-T (0.082 pg/ml; reference range, 0–0.03 pg/ml) levels were elevated. The D-dimer level was 0.18 mg/L (reference range, 0–0.8 pg/ml).

The transthoracic echocardiography revealed a left ventricular wall thickness of 16mm and normal left ventricular diameter (Supplemental Material 1). The estimated left ventricular ejection fraction was 57%. Coronary angiography revealed no significant stenosis in coronary artery systems (Supplemental Material 2). Cardiac Magnetic Resonance Imaging (MRI) revealed abnormal signal in the front wall of the left ventricle, but the signal was not related to the heart's blood supply (Figure 1). In addition, 99mTc-PYP imaging indicated low likelihood of myocardial ATTR amyloidosis with a myocardial uptake ratio of 0.88 in the left ventricle. Serum immunoglobulin levels were normal. Serum immunofixation tests also showed no evidence of monoclonal gammopathy (κ: 21.3 mg/L, normal range 6.7–22.4 mg/L; λ: 24.4 mg/L, normal range 8.3–27.0 mg/L).

The patient lacked a history of stroke-like episodes, yet displayed abnormal serum lactic acid levels (pre-exercise: 3.5 mmol/L, immediate post-exercise: 9.25 mmol/L, and 10 minutes post-exercise: 6.97 mmol/L; reference range, 0.7–2.1 mmol/L). Cranial MRI exhibited punctate high signals on T2WI and T2-FLAIR, signifying lacunar infarction (Figure 4). Cardiac symptoms, hearing loss, diabetes, and abnormal cardiac MRI findings
suggest a greater MELAS syndrome likelihood. Subsequently, a right musculus gastrocnemius tissue biopsy provided deeper insight. Transmission electron microscopy disclosed local myofibril fragmentation, disorderly arrangement, sarcomere disappearance, apoptotic bodies, and a significant amount of collagen. While mitochondrial swelling was mild, lipid droplet accumulation was notable (Figure 2). Modified Gomori trichrome staining of the skeletal muscle biopsy revealed broken red fiber infiltration (Figure 3).

The whole-exome sequencing (WES) analysis has confirmed the presence of a m.3243A > G mutation in the MT-TL1 gene, with a mutation abundance of 14.2% detected in the blood sample. Five family members underwent WES. Two daughters of the index case and one of the three nephews have a normal genotype, while the remaining two nephews (III-1 and III-2) carry the m.3243A > G transition mutation without clear symptoms (Figure 5). No mutations associated with other diseases, including Anderson-Fabry disease, were identified in the family. Upon discharge, the patient was prescribed empagliflozin (15mg, orally once daily) and dapagliflozin (10mg, orally once daily) for blood sugar control, along with coenzyme Q10 capsules (10mg, three times daily after meals), and a complex vitamin B tablet (2 tablets, three times daily) containing Vitamin B1 (3mg), Vitamin B2 (1.5mg), Vitamin B6 (0.2mg), Niacin (10mg), and Calcium Pantothenate (1mg). The patient was advised to monitor blood sugar levels and consult the endocrinology department for diabetes medication adjustments. Four months post-
discharge, we conducted a telephone follow-up with the patient. The patient reported that
both the discomfort in the chest and the hearing impairment have shown some degree of
improvement.

Discussion

MELAS syndrome is a rare genetic disorder that affects mitochondrial function in the
body's energy-producing cells, resulting in a range of symptoms that can include muscle
weakness and pain, seizures, stroke-like episodes, headaches, nausea and vomiting,
hearing loss, cognitive impairment, cardiac abnormalities, and diabetes1,3. The m.3243A
\textgreater{} G transition is the most frequent mutation associated with MELAS syndrome,
accounting for 80\% of cases, and its prevalence is at least 3.5 out of 100,000 individuals4.

When this mutation causes deficiencies in the oxidative phosphorylation system, it can
lead to increased production of harmful molecules called reactive oxygen species5,
causing damage to macromolecules and dysfunction in multiple organs. The presence of
cardiac symptoms such as chest tightness, endocrine disorders such as diabetes mellitus,
and sensorineural hearing loss are pathognomonic features of MELAS syndrome.

In this case, apart from cardiac symptoms, the patient also exhibits hearing loss and
diabetes. Additionally, the elevation of his lactic acid level makes a clinical diagnosis of
MELAS more likely. The cranial MRI showed lacunar infarcts, but they are not
characteristic of MELAS. There is no direct association between the patient's hearing loss
with the observed infarcts. The patient lacks typical neurological symptoms of MELAS
syndrome, such as headaches, stroke-like episodes, and seizures, which are reported in over 90% of cases6,7. This aligns with some previously reported cases.8,9 where cardiac symptoms are often accompanied by hearing impairment and endocrine system disorders, rather than neurological impairments.

In mitochondrial diseases, mutant and wild-type mtDNA coexist within the same cell, leading to variability in the clinical presentation of MELAS syndrome. Within an individual, different cells and organs can have varying mutational loads, resulting in different degrees of dysfunction10. This explains why clinical manifestations can vary even within families carrying the same mutation.

As MELAS is a maternally inherited mitochondrial disease, affected mothers transmit the disease to all of their children due to the exclusive maternal inheritance of mitochondrial DNA in the zygote. Conversely, males do not transmit mitochondrial diseases4. Genetic testing has significant implications for guiding eugenic reproduction in female patients with MELAS. Therefore, it is crucial to diagnose MELAS in the offspring of affected female patients.

In conclusion, for adult patients with suspected MELAS, evaluation should begin with a thorough medical history and physical examination, followed by appropriate laboratory investigations11. When fulfilling the diagnostic criteria for certain cases becomes challenging, the implementation of muscle biopsy and WES analysis remains a vital approach in diagnosing MELAS syndrome.
Currently, there is no specific and effective treatment for MELAS syndrome. Treatment aims to manage symptoms, improve quality of life, and slow disease progression through various therapies such as nutritional support, muscle training, and medications. In severe cases where heart damage is present and symptoms persist despite other treatments, heart transplantation may be considered. Medication mainly focuses on symptomatic relief, such as supplementing with L-arginine and coenzyme Q10, which can help improve energy metabolism and quality of life for patients. It should be noted that some drugs, such as metformin, phenobarbital, and statins, may affect mitochondrial function, and their use needs to be carefully evaluated.

Consent The written consent for submission and publication of this case report containing images, videos, and laboratory data was obtained from the patient in line with COPE guideline.

Conflict of interest None declared.

Acknowledgement None.

Data availability

The data underlying this article will be shared on reasonable request to the corresponding author.
References

10.1002/14651858.CD002967.pub4

Figure legends

Figure 1

A and B: T2-weighted imaging reveals patchy, slightly high signal (indicated by arrows) in the anterior wall of the left ventricle.

C and D: Delayed enhancement appears as stripes, patches, and granular distribution mainly in the anterior and inferior walls of the left ventricle (indicated by triangles), with transmural distribution.

Figure 2

A: Apoptotic bodies are observed near the nuclei of muscle cells in other parts of the biopsy tissue. There is a large amount of collagen between muscle cells.
B and C: The mitochondria show slight swelling, and there is still a significant amount of lipid droplet accumulation in the tissue.

D, E, and F: Local muscle filaments are broken, arranged disorderly, and sarcomeres disappear.

Figure 3

A: Cross-sectional muscle fiber under a 20x objective lens, with the black arrow indicating representative fragmented red fiber infiltration.

B: Longitudinal muscle fiber under a 20x objective lens, with the black arrow indicating fragmented red fiber infiltration.

Figure 4

A and B: Punctate high signals are observed on T2WI and T2-FLAIR images.

C and D: No significant abnormal signals are seen on T1WI and DWI.

Figure 5

A: Pedigree chart.

B: Individuals III-3, III-4, and III-5 have a normal genotype. Individuals III-1 and III-2 carry the m.3243A > G transition mutation.
Figure 1
78x80 mm (x DPI)

Figure 2
112x80 mm (x DPI)
Figure 3
160x65 mm (x DPI)

Figure 4
80x76 mm (x DPI)
Figure 5

Proband: m.3243A>G

III-4: no mutation

III-5: no mutation

III-3: m.3243A>G

III-2: no mutation

III-1: m.3243A>G

91x88 mm (x DPI)