Growth Indices, Anemia, and Diet Independently Predict Motor Milestone Acquisition of Infants in South Central Nepal

Emily H. Siegel, Rebecca J. Stoltzfus, Patricia K. Kariger, Joanne Katz,* Subarna K. Khatry,† Steven C. LeClerq,† Ernesto Pollitt,** and James M. Tielsch*

Division of Nutritional Sciences, Cornell University, Ithaca, NY; *Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore MD; †Nepal Nutrition Project-Sarlahi, Nepal Netra Jyoti Sangh, Kathamandu, Nepal; and **Program in International Nutrition, University of California, Davis, CA

ABSTRACT The acquisition of bipedal locomotion is an important aspect of gross motor development that ultimately affects the cognitive development of young children. Evidence for associations between nutrition-related variables and walking acquisition and motor milestone clearance; however, several controversies remain: 1) Is there an ordinal relation between motor milestones? 2) Is linear growth the salient variable or is wasting as important in walking acquisition? 3) Do anemia and growth...
have independent effects on walking in populations of children outside of Zanzibar (17). Are dietary factors merely a proxy for anemia?

We identified factors that were associated with the motor milestone acquisition of a nutritionally at risk population-based sample of 4- to 17-mo old children living in the South Central Terai region of Nepal and attempted to address the questions above. We hypothesized that anthropometric indicators, hemoglobin concentration, and diet would be associated with walking in our Nepali cohort, after controlling for age.

SUBJECTS AND METHODS

Study population. This study was a cross-sectional, community-based investigation of baseline characteristics of children enrolled in a sub-study of a randomized, placebo-controlled, clinical trial of zinc and/or iron-folic acid supplementation on childhood mortality, morbidity, growth, and development (trial registered at www.clinicaltrials.gov NCT01395511) between January and March 2002 that occurred in the lowland Terai region of south central Nepal in Sarlahi District, which borders Northern India. In one village development committee, 569 eligible children 4- to 17-mo of age were identified from census data that were collected by study personnel between December 2000 and March 2001. Of these children, 494 had their blood drawn and growth indices measured; 485 of the 494 children had complete motor milestones data; 315 of the 485 children were between 8- and 17-mo old and were therefore eligible for the walking analysis. One child with paralysis was excluded from participation. The study was approved by both the Johns Hopkins University Committee on Human Research and the Nepal Health Research Council.

Motor development was evaluated using a 14-item, prospective, ordinal pictorial scale of motor milestones. Fieldworkers visited the study children’s homes and asked each child’s mother whether the child had achieved any of the 14 motor milestones before the visit. They recorded the most advanced milestone reported. The measure was adapted from a 17-item scale that was used in Indonesia to pinpoint the acquisition of gross motor skills in 12- to 30-mo old children (20,21), and modeled after an earlier instrument that proposed a sequence for the development of bipedal locomotion (8). The 17-item scale was expanded downward to include appropriate items for our younger sample and upward to avoid a ceiling effect using items from the Bayley Psychomotor Index (22). Pilot testing verified the appropriate ordering of the milestones. Reliability among raters and internal validity measures conducted in the field resulted in high correlations between the following: 1) the mother’s report to the fieldworker and to a supervisor who repeated the questioning within 2 wk of the initial report (Cronbach’s = 0.97); 2) the mother’s report to the fieldworker and the supervisor’s observation of the child performing the reported milestone during the supervisor’s visit (Cronbach’s = 0.98); and 3) the mother’s report to the supervisor and the supervisor’s observation of the child performing the reported milestone (Cronbach’s = 0.99). The 14 items used for this study and their corresponding definitions are published elsewhere (17).

Blood was collected using a heel-prick method to extract 3 drops of blood from each child. The first was wiped away, and the second and third were used for testing erythrocyte protoporphyrin (EP) and hemoglobin with a Hemoglobin Photometer (HemoCue) and a Hematocrit photometer (AVIV Biomedical), respectively. Fieldworkers performed daily quality control assessments with a standardized microcuvette and cover glass to test the reliability of the HemoCue and AVIV machines.

Anthropometric measures included weight, recumbent length, mid-upper arm circumference (MUAC), and head circumference. Trained fieldworkers measured the infants in the presence of their family members. Each indicator was measured in triplicate. Weight was measured to the nearest 0.1 kg using a SECA floor scale. Recumbent length, MUAC, and head circumference were measured to the nearest 0.1 cm using a Shorr Board for length (Shorr Productions), a MUAC tape, and a Ross Head Circumference Tape (Holtain).

Questions about infant feeding were asked of the child’s mother by fieldworkers in the child’s home. The fieldworkers read a list of foods and asked whether the mother had fed her child the foods in the previous 7 d. The most common foods and food categories fed to young children were included in the list: nonhuman milk, rice, bread, biscuits, greens and vegetables, lentils, fruit, egg, and meat. The questionnaire was developed from formative research in which mothers were asked to list all foods they fed to infants. Foods that were listed by >1 mother were included in the questionnaire.

Fieldworkers recorded the presence of material assets, house construction, and water source in the child’s home before the start of data collection. Basic demographic information including the child’s sex, caste, and birth date was also recorded. When caregivers were unable to remember the exact month and day of the child’s birth, local calendars with the lunar cycle and a list of local festivals were used to assist in recall.

Data analysis. Data were entered into SQL Server 7.0 and analyzed using SPSS 12.0. Z-scores were calculated for the length-for-age, weight-for-height, and weight-for-age anthropometric measures using the 1978 CDC/WHO growth reference in EpiInfo Version 6.0 (CDC). Stunting, wasting, and underweight were defined, respectively as length-for-age, length-for-weight, and weight-for-age less than −2 Z-scores. Mean head circumference and MUAC were calculated for the analysis. Eight of the 494 children who had motor milestone and hemoglobin data were excluded from the analysis because their reported motor milestones were found to be implausible for children their age. One child had missing data.

The definition of anemia used in this analysis was a hemoglobin concentration <105 g/L. Although this is <110 g/L, the cutoff value proposed by the WHO and the CDC for children 6 mo to 5 y old, it reflects the only reference value derived from iron supplementation data that were collected from breast-fed infants (23). Iron-deficiency anemia was defined as anemia with an EP value > 90 μmol/mol heme (23).

A scale was created as a means of summarizing socioeconomic status (SES); 12 of the 17 related items were retained for the scale. These included the presence of the following: a household latrine, servant, cattle, bicycle, radio, farmable land, home garden plot, second floor on the house, roof, TV, electricity in the house, and bullock cart. Principal components analysis was used to extract the factors for the scale (24). The most comprehensive factor with the largest eigenvalue > 1 was selected for reliability analysis. Cronbach’s (25) was used to assess the internal consistency of the selected items. The reliability of the SES scale was good (= 0.78). A higher score on the SES scale reflected a greater number of possessions.

Age of attainment for each milestone was calculated from maternal report and presented as a whole number (i.e., children between 8.0 and 8.9 mo of age were considered to be 8 mo old). Children 8- to 17-mo old (n = 485) were classified as walkers or nonwalkers for the multivariate analysis (17). The ages reflect the range of children within each age group. Walkers had a higher attained motor milestone of walk without support (walk 2), run, jump, or stand on 1 foot. Nonwalkers were able to stand with or without support (stand 1 and stand 2) or walk with support (walk 1), but not without support.

An exploratory analysis was performed on descriptive characteristics of the study sample at baseline. Dichotomous relations between nonwalkers and walkers and sex, age, caste, SES, several anthropometric indices, animal source foods, hemoglobin, anemia, and EP were examined. Means of continuous variables and proportions of categorical variables were analyzed using t and χ² tests.

Multivariate models were created to test the predictive effect of length-for-age, weight-for-length, and anemia (hemoglobin < 105 g/L) and length-for-age, weight-for-length, anemia, and meat intake on walking among the Nepali cohort. The independent and joint effects of the anthropometric indicators, anemia, and diet on walking acquisition were examined.

4 Abbreviations used: EP, erythrocyte protoporphyrin; MUAC, mid-upper arm circumference; SES, socioeconomic status.
TABLE 1
Characteristics of the study sample

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>n = 485</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
<td>241 (49.7)</td>
</tr>
<tr>
<td>Age, mo</td>
<td>10.8 ± 4.0</td>
</tr>
<tr>
<td>High-caste Hindu: Brahmins and Chhetris</td>
<td>45 (9.3)</td>
</tr>
<tr>
<td>Low-caste Hindu</td>
<td>77 (15.9)</td>
</tr>
<tr>
<td>Vaiysha</td>
<td>300 (61.9)</td>
</tr>
<tr>
<td>Shudra</td>
<td>63 (13.0)</td>
</tr>
<tr>
<td>Muslim</td>
<td>228 (47.5)</td>
</tr>
<tr>
<td>Low SES4 (<4 possessions)</td>
<td>228 (47.5)</td>
</tr>
<tr>
<td>Length-for-age Z-score5</td>
<td>−1.6 ± 1.1</td>
</tr>
<tr>
<td>Weight-for-length Z-score3</td>
<td>−1.2 ± 0.9</td>
</tr>
<tr>
<td>Weight-for-age Z-score</td>
<td>−2.0 ± 1.0</td>
</tr>
<tr>
<td>Hemoglobin, g/L</td>
<td>101.3 ± 12.5</td>
</tr>
<tr>
<td>Anemia (hemoglobin <105 g/L)</td>
<td>280 (57.7)</td>
</tr>
<tr>
<td>EP, μmol/mol heme</td>
<td>129.5 ± 90.0</td>
</tr>
<tr>
<td>Iron-deficiency anemia4,6</td>
<td>207 (43.0)</td>
</tr>
<tr>
<td>Consumed animal source foods4</td>
<td>244 (50.7)</td>
</tr>
<tr>
<td>Consumed meat4</td>
<td>124 (25.8)</td>
</tr>
</tbody>
</table>

1 Values are n (%) or means ± SD.
2 n = 480.
3 n = 494.
4 n = 481.
5 Hemoglobin < 105 g/L and EP ≥ 90 μmol/mol heme.

RESULTS

Among the 485 children, there were as many boys as there were girls who ranged in age from 4- to 17-mo (Table 1). They were predominately Hindu (84%); the remainder were Muslim (16%). They owned few possessions. One-third were stunted (33.7%), one-fifth were wasted (20.6%), and more than one-half were underweight (52.7%). Mean hemoglobin concentration was present in the other samples (Fig. 1).

Half of the sample could sit without support by 6 mo, crawl by 7 mo, walk with support by 11 mo, and walk without support by 14 mo (Fig. 1). When the median age in months for attainment of specific motor milestones for our Nepali sample was plotted against data from a British (26), an American (27), an Indonesian (18), and a Zanzabari sample (17), Nepali children attained milestones ~1.5 mo later than children from Western populations and 1 mo earlier than children from Indonesia and Zanzibar. The Nepali data revealed a developmental progression of motor milestone acquisition that was present in the other samples (Fig. 1).

TABLE 2
Age, weight, and diet of walking and nonwalking Nepali children (n = 315)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Walkers (n = 162)</th>
<th>Nonwalkers (n = 153)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, mo</td>
<td>14.4 ± 2.1</td>
<td>11.9 ± 2.3**</td>
</tr>
<tr>
<td>Weight-for-age Z-score</td>
<td>−2.2 ± 0.9</td>
<td>−2.4 ± 0.9*</td>
</tr>
<tr>
<td>Diet2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consume animal source foods3</td>
<td>123 (76.4)</td>
<td>85 (55.6)**</td>
</tr>
<tr>
<td>Consume meat</td>
<td>83 (53.4)</td>
<td>35 (22.9)**</td>
</tr>
</tbody>
</table>

1 Values represent means ± SD or n (%). Asterisks indicate different from walkers: * P < 0.05; ** P < 0.001.
2 n = 314 overall, n = 161 walkers.

In bivariate analyses, walkers (n = 162) and nonwalkers (n = 133) differed significantly in age, weight-for-age, and diet (Table 2). Compared with nonwalkers, walkers were older, less underweight, and ate more animal source foods. Walkers and nonwalkers did not differ in the other characteristics.

In multivariate regression models, age, length-for-age, weight-for-length, anemia (dichotomous variable; hemoglobin < 105 g/L), and meat consumption were significant predictors of walking in the Nepali cohort (Table 3). Models with hemoglobin concentration inserted as a continuous variable and iron-deficiency anemia (hemoglobin concentration < 105 g/L and EP ≥ 90 μmol/mol heme) inserted as a dichotomous variable were tested independently in place of anemia, but were not significant. An alternate model with animal source foods as a dichotomous variable was tested and was significant, but is not presented because model 2 with meat was stronger. Caste was significant in Model 1, but not in Model 2. The odds that a low-caste Hindu and a Muslim child compared with a high caste Hindu (Brahmin or Chhetri) child had achieved walking were >3 times greater. The length-for-age, weight

![FIGURE 1](https://academic.oup.com/jn/article-abstract/135/12/2840/4669913/figure1)

FIGURE 1 Motor milestone attainment by age among different cohorts of children. Ages are means for the American sample (27) and medians for the Nepali (present study), Zanzabari (17), Indonesian (18), and British (26) samples.
for-length, and anemia odds ratios did not differ between the 2 models, revealing an independent association between the anthropometric indicators, anemia, and walking. The adjusted log odds that a child would be able to walk without assistance increased by 70% for every unit increase in length-for-age Z-score, by 65% for every unit increase in weight-for-length Z-score, by 100% when anemia was absent, and by 200% when the child was reported to have eaten meat.

DISCUSSION

The data offer confirmatory evidence of an ordinal relation between the milestones and reveal a range of timing of motor milestone acquisition. We conclude that although there are occasional individual children who show some transpositions in the ordering of motor milestones, the acquisition of these milestones is ordered across different cultures and levels of nutritional risk in different populations. Further, this ordering holds despite the fact that the timing of the acquisition varies among well- and poorly nourished infants and toddlers.

Predictors of walking. Walking without assistance in our Nepali sample was associated with age, length-for-age, weight-for-length, anemia, and diet. The study reveals an independent effect of 2 anthropometric indicators, anemia, and meat intake on walking acquisition and contributes to earlier evidence that motor development is sensitive to nutritional factors. This is the first study in the known literature that was able to examine the combined effects of growth, anemia, and diet on walking acquisition.

Consistent with previous research, we found that children with higher length-for-age Z-scores and no anemia walked at an earlier age than children with lower Z-scores and anemia. In our sample, weight-for-length also was associated with walking acquisition, which was a finding that supported 2 studies (17,19), but contradicted a third (18). Results from a Pakistani sample revealed a linear, inverse association between thinness at birth, postnatal stunting and wasting, and observed motor milestone acquisition (19). A study conducted in Zanzibar (17) that examined physical growth and different iron-status indicators found that length-for-age, weight-for-length, anemia, and/or iron-deficiency were associated with walking. Results from a study conducted among socially deprived Indonesian preschool children found that motor development was strongly associated with length-for-age, moderately associated with weight-for-age, and not associated with weight-for-length (18). The combined results of these studies show an association between children's length and weight-for-length and the attainment of bipedal locomotion in several populations on different continents.

Our finding that growth and anemia were independently associated with walking replicate the findings from Zanzibar (17) that examined the association of physical growth and iron-status indicators on the same motor milestones that were used in the present Nepal study. Before the Zanzibar study, associations between anemia and motor development were characterized by results from standardized tests of infant development that measure global gross motor development indices (28–31). Anemic and/or iron-deficient children were found to perform poorly compared with their nonanemic peers on the Bayley Scales of Infant Development motor scale and school-aged tests of motor development (30,32–34). The literature reveals a robust relation between anemia and motor development. This study, in conjunction with the one from Zanzibar, reveals an independent effect of anemia on walking, a specific motor skill.

Our finding that diet is associated with walking is consistent with research conducted in Guatemala (16). In 2 longitudinal studies, length-for-age, weight-for-age, and animal protein intake from complementary foods were associated with earlier age of walking. Animal source foods both contain bioavailable iron and enhance iron absorption from nonanimal foods (35); however, anemia was not measured in the Guatemala study. Thus, the question arises, was animal protein intake a proxy for anemia? Our study reveals that in Nepal, anemia and meat intake were independently associated with walking.

Our finding that animal protein was associated with development supported the Guatemala study (16) and longitudinal research conducted in Egypt, Mexico, and Kenya where positive associations were found between animal source foods and growth, cognitive development, and physical activity among school-aged children (35–38). A more recent study conducted in rural Kenya found that supplementation with animal source foods had positive effects on children's cognitive performance; however, different types of animal source foods were not found to produce the same effects among the study children (39). Children who consumed meat performed significantly better on general problem-solving ability measured by the Raven's Progressive Matrices than children in any of the other groups (39). This finding paralleled ours in which the odds of walking for our Nepali children who consumed meat were higher than the odds of walking for children who consumed animal source foods, including meat, eggs, and nonhuman milk. Our data emphasize the importance of meat intake in a young child's diet, and suggest that these dietary variables are not simply proxies for anemia status or better growth. Further research is required to clarify whether meat intake influences motor development through other biological pathways, or whether this strong association is caused by residual confounding by other unmeasured social or health variables.

Caste, but not sex or SES, was predictive of walking acquisition in Model 1 with growth and anemia. In a mixed Nigerian and white sample, girls attained milestones earlier than boys (40). For SES, an American sample (27) found children with a higher SES to have slower motor development. Researchers found class differences for walking in a British sample (26). As far as we know caste has not been a factor in previous motor development analyses; however, racial differences have been addressed. Research conducted among Nigerian children reports that the African children attained milestones earlier than the white children with whom they were compared (40). The American sample had similar findings; African-American children developed faster than Caucasian children (27). In our sample, low caste Hindus and Muslims walked earlier than high caste Hindu children. It is possible that caste is a proxy for SES and that our findings parallel those found in the American sample (27), as evidenced by our finding that low caste children were at significantly greater odds of walking earlier than high caste children and that low SES children tended to be at greater odds (P = 0.29) of walking earlier than high SES children. It is also possible that caste is a unique social construct, similar if not equal to race. Caste laws were originally based on race.

This cross-sectional study is limited in its ability to address causation and provide exact timing of walking acquisition. Having collected data at only 1 time point does not allow us to specify when the Nepali children achieved walking without support nor does it allow us to compare the effect of the different predictors among children who have achieved walking. Nevertheless, this study strengthens existing knowledge by confirming an association between and revealing the inde-
dependent effect of the 2 growth indices, anemia, and diet on bipedal locomotion.

Longitudinal and randomized, placebo-controlled, clinical trial research is required to delineate how differences in iron and other nutritional factors influence bipedal locomotion and ultimately the cognitive development of young children. The present data indicate that the variability of nutritional status among infants and toddlers accounts for part of the variance in gross motor development. Because each of the motor milestones involves different body parts and biomechanics that result in different kinds of behaviors (5–9), we conclude that nutrition factors affect a developmental system (41). This, in turn, is likely to influence other developmental systems as well.

LITERATURE CITED

Downloaded from https://academic.oup.com/jn/article-abstract/135/12/2840/4669913 by guest on 20 March 2019