A Novel GCAP1 Missense Mutation (L151F) in a Large Family with Autosomal Dominant Cone-Rod Dystrophy (adCORD)

Izabela Sokal,1 William J. Dupps,2 Michael A. Grassi,2 Jeremiab Brown, Jr,2,5 Louisa M. Affatigato,2 Nirmalya Roychoudhury,4 Lili Yang,4 Slawomir Filipek,5 Krzysztof Palczewski,1,6,7 Edwin M. Stone,2,8 and Wolfgang Baehr4,9,10

PURPOSE. To elucidate the phenotypic and biochemical characteristics of a novel mutation associated with autosomal dominant cone–rod dystrophy (adCORD).

METHODS. Twenty-three family members of a CORD pedigree underwent clinical examinations, including visual acuity tests, standardized full-field ERG, and fundus photography. Genomic DNA was screened for mutations in GCAP1 exons using DNA sequencing and single-strand conformational polymorphism (SSCP) analysis. Function and stability of recombinant GCAP1-L151F were tested as a function of [Ca2+]i, and its structure was probed by molecular dynamics.

RESULTS. Affected family members experienced dyschromatopsia, hemeralopia, and reduced visual acuity by the second to third decade of life. Electrophysiology revealed a nonrecordable photopic response with later attenuation of the scotopic response. Affected family members harbored a C→T transition in exon 4 of the GCAP1 gene, resulting in an L151F missense mutation affecting the EF hand motif 4 (EF4). This change was absent in 11 unaffected family members and in 100 unrelated normal subjects. GCAP1-L151F stimulation of photoreceptor guanylate cyclase was not completely inhibited at high physiological [Ca2+]i, consistent with a lowered affinity for Ca2+-binding to EF4.

CONCLUSIONS. A novel L151F mutation in the EF4 hand domain of GCAP1 is associated with adCORD. The clinical phenotype is characterized by early cone dysfunction and a progressive loss of rod function. The biochemical phenotype is best described as persistent stimulation of photoreceptor guanylate cyclase, representing a gain of function of mutant GCAP1. Although a conservative substitution, molecular dynamics suggests a significant change in Ca2+2+→binding to EF4 and EF2 and changes in the shape of L151F-GCAP1. (Invest Ophthalmol Vis Sci. 2005;46:1124–1132) DOI:10.1167/iovs.04-1431

 MODELING was partly done at the ICM Computer Centre, Warsaw, Warsaw, Poland.

Supported by National Eye Institute Grants EY09339 (KP), EY08123 (WB); a grant from Research to Prevent Blindness (RPB) to the Departments of Ophthalmology at the University of Washington and the University of Utah; a grant from the Macular Vision Research Foundation (WB); a Center grant of the Foundation Fighting Blindness (Owings Mills, MD) to the University of Utah; and a grant from the E.K. Bishop Foundation (KP). EMS is an investigator at the Howard Hughes Medical Institute.

Submitted for publication December 6, 2004; accepted January 2, 2005.

Disclosure: I. Sokal, None; W.J. Dupps, None; M.A. Grassi, None; J. Brown, Jr, None; L.M. Affatigato, None; N. Roychoudhury, None; L. Yang, None; S. Filipek, None; K. Palczewski, None; E.M. Stone, None; W. Baehr, None

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be marked "advertisement" in accordance with 18 U.S.C. §1734 solely to indicate this fact.

Corresponding author: Wolfgang Baehr, Moran Eye Center, University of Utah Health Science Center, 15N/2030E EIHG, Salt Lake City, UT 84112; wbaehr@hsc.utah.edu.
I143NT) have been linked to autosomal dominant cone dystrophy (adCD).
A C→T transition in exon 4 of GCAP1 that would be expected to result in an L151F missense mutation in GCAP1 was identified by SSCP and DNA sequencing. Further analysis revealed that this mutation created an EcoRI restriction site in the gene. A 200-bp PCR product containing this site was generated for all family members and was subjected to EcoRI digestion. Unaffected family members demonstrated a single uncut band, whereas affected individuals showed a diagnostic second band (arrow). Individuals from whom blood samples were not acquired are not depicted. (B) Examples of funduscopic features in adCORD associated with the GCAP1-L151F mutation. Labels correspond to patient numbers in Table 1. Top row: Patient 2 had mild central pigmentary maculopathy at age 40, more evident with perifoveal RPE transmission defects on angiography (rightmost panel). Middle row: Patient 2, 17 years later, had marked central atrophy. Bottom row: Patients 4, 19 (35 and 26 years of age, respectively) showed extramacular pigmentary abnormalities.

Materials and Methods

Patients

The study was approved by the institutional review board of the University of Iowa Carver College of Medicine and adhered to the tenets of the Declaration of Helsinki. Patients comprised a single large family. There were 11 branches of the family, with 4 branches having affected family members. We use the term “family” to refer to the descendants of a multigeneration pedigree of known related individuals (Fig. 1). Autosomal dominant inheritance was evident with the presence of multiple affected individuals in each generation and male-to-male transmission. Twenty-six individuals participated in this study. In all patients, phenotypic characterization included an ophthalmic history, assessment of visual acuity, Farnswell-Munsworth color vision testing, and a funduscopic examination. Selected patients (Table 1) received additional psychophysical testing, which included a Ganzfeld electroretinogram (ERG) in accordance with the recommendations of the International Society for Clinical Electrophysiology of Vision, as well as a Goldmann visual field. Patients were considered affected if they had bilateral central visual loss associated with macular retinal pigment epithelial (RPE) abnormalities and poor color vision. In all cases, the disease status was determined before genotyping. In cases in...
Genotyping and Mutation Analysis

Genomic DNA was extracted from peripheral blood by using standard techniques. For both genotyping and mutation screening, 1.25 ng of each patient's DNA were used as a template in an 8.35 L1 0 polymerase (Biolase, San Clemente, CA). Samples were denatured for 5 minutes at 94°C and electrophoresed on 0.4 mm denaturing gels (6% polyacrylamide, 5% glycerol gels at 25 W for approximately 3 hours at room temperature. After electrophoresis, gels were stained with silver nitrate. Abnormal PCR products identified by SSCP analysis were sequenced by using fluorescent dideoxynucleotides on an automated sequencer (model 377; Applied Biosystems Inc., Foster City, CA). All sequencing was bidirectional.

Expression Constructs of Mutant GCAP1s

The mutations were introduced into a human GCAP1 plasmid (h-GCAP1) by site-directed mutagenesis, and the mutant GCAPs wereexpressed in insect cells. Briefly, the EcoRI-digested insert of hGCAP1 was cloned into pFastBac-1 (Invitrogen-Gibco, Grand Island, NY) and transformed into the XL-I-Gold Escherichia coli strain. The orientation of the resultant plasmid was confirmed with PsI digests, and the mutations were verified by DNA sequencing with the primers 5'-GTTGCTACGTATCTCAGGG-3' and 5'-GTAAAACCTCTAAAATGTGG-3'. Wild-type human GCAP1, GCAP1-E155G, and GCAP1-I143NT plasmids (pFastBac) were generated as previously described.22

SDS-PAGE and Immunoblot Analysis

The expression of GCAP1 proteins was confirmed with UW101 antibody using SDS-PAGE and immunoblot analysis, as described.35 All purification procedures were performed at 4°C. After homogenization, cell suspensions were centrifuged at 100,000 g for 20 minutes. Supernatants were used as a source of recombinant proteins for protein purification. GCAPs were purified using monoclonal antibody (G2) coupled to CNBr-activated Sepharose resin (~5 mg of IgG per 1 mL of the gel) as described previously.36 Purified proteins were dialyzed overnight against 10 mM BTP (pH 7.5), containing 100 mM NaCl. The purity of the proteins was estimated by SDS-PAGE and Coomassie staining. SDS-PAGE in the presence and absence of Ca2+ and limited proteolysis of purified GCAP1 and GCAP1 mutants were performed as previously described.37

GC Activity Assay

Washed rod outer segment (ROS) membranes38 were prepared from fresh bovine retinas reconstituted with recombinant GCAPs and assayed as described.39 (Ca2+) was calculated using the computer pro-

Table 1. Clinical and Electrophysiologic Findings in Affected Family Members

<table>
<thead>
<tr>
<th>Patient</th>
<th>Age (y)</th>
<th>BCVA (OD, OS)</th>
<th>Photopic ERG (% amp)*</th>
<th>Scotopic ERG (% amp)†</th>
<th>Field Defect</th>
<th>Hemeralopia</th>
<th>Color Deficit‡</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>20/25, 20/25</td>
<td>Minimal</td>
<td>Borderline</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>25/20, 20/40</td>
<td>20/60, 20/40</td>
<td>62%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>40</td>
<td>20/60, 20/60</td>
<td>Minimal</td>
<td><50%</td>
<td>Central</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>33</td>
<td>20/160, 20/50</td>
<td>20%</td>
<td>57%</td>
<td>Central</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>58</td>
<td>20/40, 20/50</td>
<td>20%</td>
<td>75%</td>
<td>Paracentral</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>27</td>
<td>20/40, 20/30</td>
<td>20/50, 20/50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>85</td>
<td>LP, LP</td>
<td>20/20, 20/20</td>
<td>20/50, 20/50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>36</td>
<td>20/40, 20/40</td>
<td>Slightly reduced</td>
<td>Borderline</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>36</td>
<td>20/40, 20/50</td>
<td>20/65, 20/80</td>
<td>55%</td>
<td>Central</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>20</td>
<td>40</td>
<td>20/60, 20/50</td>
<td>No red</td>
<td>Normal</td>
<td>None</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>22</td>
<td>17</td>
<td>20/30, 20/40</td>
<td>No red 13%; no flicker</td>
<td>Normal</td>
<td>Paracentral</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>23</td>
<td>18</td>
<td>20/50, 20/50</td>
<td>20/125, 20/125</td>
<td>78%</td>
<td>Paracentral</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>24</td>
<td>17</td>
<td>20/20, 20/20</td>
<td>Delayed implicit time</td>
<td></td>
<td>Normal</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* b-Wave amplitude for 10-minute light-adapted, bright, white flash (as percentage of the minimum normal response, average of both eyes).
† b-Wave amplitude for 30-minute dark-adapted, dim (white flash) (calculated as described for photopic response).
‡ (+ +), severe dyschromatopsia based on FM-100 error score >300 or 0/14 pseudo-isochromatic plates; (+), FM-100 error score >200 or red dyschromatopsia by Nagel anomaloscope.

which the patient had died, the disease status was inferred by clinical history obtained from family members and from medical records, when available.
Fluorescence Measurements

Fluorescence measurements of GCAP1 and its mutants were performed on a spectrofluorometer (LS 50B, PerkinElmer, Wellesley, MA) using a 1 × 1-cm quartz cuvette. Emission spectra were recorded with excitation at 280 nm at 5-nm slit widths in 50 mM HEPES (pH 7.8), containing 60 mM KCl, 20 mM NaCl, 1 mM EGTA, 1 mM dithiothreitol, and 10^{-10} to 10^{-5} M CaCl₂.

Modeling GCAP1 and GCAP1-L151F

A model of GCAP1 was built using the homology modeling method in the program Modeler 41 from the Homology Module of the Insight II software (ver. 2000; Accelrys Inc., San Diego, CA) based on the crystal structure of unmyristoylated GCAP2 with three calcium ions bound (1JBA accession code in Protein Data Bank; pdbbeta.rcsb.org/pdb; provided in the public domain by Research Collaboratory for Structural Bioinformatics).42-45 The quality of the calculated structure was checked by the Profile-3D program.46 The C-terminal region, encompassing residues 177-201 of GCAP1 extending beyond residues in the crystal structure of GCAP2, was not modeled. This 177-201 fragment does not contain EF hand domains and is not essential for GC-stimulating activity.37

Homology modeling was applied for the structure of WT and L151F-GCAP1. After energy minimization, molecular dynamic (MD) simulations were performed for WT and L151F-GCAP1. All MD tasks were conducted in a periodic box filled with TIP3P-type water at a constant pressure of 1 atm and a temperature of 300 K. During the first 100 ps of equilibration phase, the protein was frozen, and water with sodium and chloride counterions was allowed to move. Then a 1-ns simulation was performed on a particle mesh Ewald (PME) algorithm 46 for treatment of long-range electrostatic interactions was used.

RESULTS

Phenotypic Appearance of GCAP1-L151F Patients

Common symptoms in affected family members included photophobia, depressed central vision, and poor color vision. In the first decade of life, the funduscopic changes were minimal, consisting of a subtle, but definite, granularity of the retinal pigment epithelium (RPE). Visualization of the RPE abnormality was enhanced by fluorescein angiography. These minimal findings were consistent with the patients’ vision, which was as good as 20/20. However, color vision was consistently abnormal, even in patients with relatively good visual acuity. For example, patient 1 had a complete inability to recognize any of the color plates at the age of 11. Moreover, the photopic ERG response was severely depressed (Table 1). Later changes included a progressive decline in best corrected visual acuity associated with the development of more pronounced macular atrophy (Fig. 1B). The photopic electroretinogram was nonrecordable in patients in the second and third decades of life. Some patients noted precipitous vision loss when the macular atrophy extended through fixation. Patients older than 55 had very poor vision (Table 1). The eldest patient (no. 17) was 85 at the time of examination and had only light perception vision in both eyes. Funduscopic examination of the latter individual revealed central atrophy with marked arteriolar attenuation and bone-spicule–like pigmentation in the periphery.

Genetic Screening and Identification of a Missense Mutation in GCAP1

Linkage analysis using short tandem repeat polymorphisms revealed significant linkage between the CORD phenotype and genetic markers from 6p21, near the locus of the peripherin-2 gene (RDS) (6p21.2-p12.3). The maximum LOD score of 3.38 was obtained with marker D6S1650. Analysis of recombination events in the pedigree revealed the limits of the disease interval to lie between markers D6S1549 and D6S1659, an interval that contains the RDS, GCAP1, and GCAP2 genes. However, SSCP analysis and direct DNA sequencing of the coding sequences of the RDS gene revealed no disease-causing sequence variations. We therefore analyzed the coding regions of the GCAP1 and GCAP2 genes and identified a novel C→T transition at the 5’ end of exon 4 in the GCAP1 gene in all affected family members (Fig. 1A). This variation changes the normal leucine residue at position 151 to phenyalanine (L151F). It was not present in any unaffected family members nor in any of more than 100 additional control subjects. Residue L151 is located within a high-affinity, Ca²⁺-binding domain (EF4) in the C-terminal domain of GCAP1. Replacement of L151 by F is considered a conservative substitution, and its linkage to disease is surprising.

GCAPs have three high-affinity Ca²⁺-binding sites consisting of helix-loop-helix EF hand motifs,37 termed EF2, -3, and -4. The EF hand is a common Ca²⁺-binding motif consisting of a 12-amino-acid loop flanked by a 12-amino-acid α helix at either end, providing heptahedral coordination for the Ca²⁺ ion.48 Of note, residues 1 and 12 of the Ca²⁺-binding loop are invariantly acidic (D or E), and residues flanking the binding loop are invariably hydrophobic (I, L, F, Y).49 In all GCAPs, the EF1 motif is incompatible with Ca²⁺-binding because of the absence of key residues essential for Ca²⁺ coordination.

Ca²⁺-Binding Characteristics of GCAP1-L151F

Cosegregation of GCAP1-L151F with CORD in 16 of 26 family members represents a strong indication of pathogenicity. We hypothesized that the mutation, although a conservative substitution, may affect Ca²⁺-binding to EF4, because L151F is located at a central position in EF4 (Fig. 2A). Residues close to L151—namely, E155 and I143—have been found to be mutated in families with cone dystrophy.22-23 However, the mutations E155G and I143NT, are nonconservative and are thought to affect Ca²⁺-binding severely. To verify the effects of L151F on Ca²⁺-binding, we further analyzed recombinant GCAP1-L151F by biochemical methods.

Ca²⁺-Dependent Conformational Changes in WT and Mutant GCAP1

Ca²⁺-binding proteins of the calmodulin supergene family show a characteristic Ca²⁺-dependent change in conformation. In its Ca²⁺-bound form (EF2 to -4 occupied by Ca²⁺), GCAP1 assumes a compact structure with a higher apparent molecular mass.49,50 As the Ca²⁺ concentration increases, GCAP1 undergoes a conformational change from the Ca²⁺-free form (presence of 1 mM EGTA), GCAP1 folds into a relaxed open structure with a lower apparent mobility. Affinity-purified recombinant GCAP1-L151F showed a Ca²⁺-shift very similar to wild-type and GCAP1-I143NT (Fig. 2B)52 when electrophoresed in high- and low-Ca²⁺ buffers. These results show that, at least at extreme Ca²⁺ buffer conditions (0 Ca²⁺ and 1 mM Ca²⁺), mutant and WT- GCAP1 behave indistinguishably.

We have noted37 that in the absence of Ca²⁺, the open conformation of GCAP1 is readily susceptible to proteolysis by trypsin. This is demonstrated in Figure 2C, where it is shown...
that exposure of GCAP1 in the absence of Ca\(^{2+}\) led to complete digestion after just 5 minutes (last two lanes). In the presence of 2 \(\mu M\) Ca\(^{2+}\), however, proteolysis was restricted because GCAP1 assumed a much more compact structure inaccessible to trypsin (Fig. 2C, left lanes). The compact core of GCAP1 remained intact, even at 20 minutes of digestion. In contrast, GCAP1-L151F at 2 \(\mu M\) Ca\(^{2+}\) is much more susceptible to proteolysis. These biochemical results illustrate that the GCAP1-L151F mutation prevents the protein from folding into a compact structure.

WT and Mutant GCAP1 Conformations Probed by Fluorescence

An increase of Ca\(^{2+}\) bound to GCAP1 causes a decrease in fluorescence intensity, with a minimum occurring at 200 to 300 nM \([Ca^{2+}]_{\text{free}}\). Further increases in Ca\(^{2+}\) levels reverse this trend and cause an increase in fluorescence intensity (Fig. 3A). These changes in the fluorescence correlate with a structural rearrangement of GCAP1 similarly to the Ca\(^{2+}\)-shift experiment, and reflect the transition from an activator to an inhibitor of photoreceptor GC. GCAP1-L151F showed an incomplete reversal (Fig. 3B), suggesting a Ca\(^{2+}\)-dependent structural rearrangement, perhaps a defect in Ca\(^{2+}\)-binding at EF4 (caused by the L151F mutation).

Persistent Stimulation of ROS GC by GCAP1-L151F

We next compared the ability of GCAP1-L151F and WT-GCAP1 to stimulate GC1 in vitro (Fig. 3C). Both GCAPs, together with previously characterized mutants GCAP1-I143NT and GCAP1-E155G, were assayed for GC1 stimulation as a function of Ca\(^{2+}\). Due to previous analyses with EF3 mutations\(^{50,49}\) and EF4 mutations\(^{22,25}\) we expected incomplete inactivation of GC1 at 700 nM Ca\(^{2+}\) levels found in dark-adapted photoreceptors. We found that GCAP1-L151F was active at low \([Ca^{2+}]\) (<200 nM) and remained active even at levels (~700 nM) that inhibit WT-GCAP1. This inhibition is physiologically relevant since it terminates production of cGMP by GC when Ca\(^{2+}\) levels have recovered to dark levels. The mutants GCAP1-E155G and GCAP1-I143NT exhibit similar activation–inactivation kinetics. Together, the findings indicate that mutations affecting EF4 and -3 partially impaired GC inhibition, leading to persistent stimulation in dark-adapted photoreceptors.

The Effect of the L151F Mutation on GCAP1 Structure

The N- and C-terminal domains of GCAP1 each contain pairs of EF hands that form a compact structure in the Ca\(^{2+}\)-bound state. The arrangement of amino acids in EF1 is incompatible with Ca\(^{2+}\)-binding, whereas EF2, -3, and -4 are known to each bind one Ca\(^{2+}\) ion, confirmed by numerous site-directed mutagenesis experiments.\(^{37,39,50,52,54}\) The mutant residue L151F is located in the \(\beta\)-sheet of the last EF hand domain, where it is in a position to influence nearby Ca\(^{2+}\)-binding sites. L151F is a conservative replacement and it is not obvious why affinity for Ca\(^{2+}\) is affected. To identify potentially significant changes in protein folding and Ca\(^{2+}\)-binding at the molecular level, and to
reveal how this mutation affects the structure, we performed 1-ns MD simulations on WT and mutant GCAP1 based on the nuclear magnetic resonance (NMR) structure of GCAP2. MD allows prediction of molecule behavior through the use of classic mechanics. It numerically solves Newton’s equations of motion for an atomistic model of a polypeptide such as GCAP1 to obtain information about its time-dependent structural properties. We used two programs for MD simulations, Yasara and Namd2, and obtained nearly identical results. Yasara is a molecular graphics, modeling and simulation package in which autocstereoscopic displays are used to visualize predicted structures. Namd2, described by Kale et al., is specifically tailored to parallel computing platforms. This program uses spatial decomposition combined with force decomposition to enhance scalability. When predicted structures of GCAP1 and GCAP1-L151F were superimposed with their C-terminal EF-hand pair domains, greater changes occurred during simulation of the L151F mutant. Direct comparison between WT and L151F structures (Fig. 4A) revealed that there was a rotation of approximately 20° of the N-terminal EF-hand pair in relation to the C-terminal pair about a long axis of the molecule. However, hydrophobic interactions between interacting helices (Fig. 4A) were preserved. Furthermore, the mutated EF-hand domain was moved by approximately 0.1 nm (1 Å) along the β-sheet in relation to WT-GCAP1.

In WT-GCAP1, five amino acids participate in the binding of Ca$^{2+}$ in EF4: D144, N146, D148, E150, and E155. In the mutant structure, N146 was moved apart and D148 accommodated to form a stronger bond with Ca$^{2+}$, using both acidic oxygen atoms. We calculated the distance between Ca$^{2+}$ and Asn146 (side chain oxygen O$_1$ atom) in both mutant and WT structure during MD. Figure 4B shows that the preferred position of Asn146 in WT-GCAP1 was close to the bound Ca$^{2+}$ (average distance 0.23 nm), although during the first 500 ps it was separated from the calcium ion with an average distance of 0.44 nm. This is contrary to the L151F mutant, where the initial distance of 0.23 nm increased shortly after 100 ps to 0.57 nm and after 600 ps to 0.68 nm. Fluctuations in this distant position are much greater than in proximity to the Ca$^{2+}$ ion in WT-GCAP1. This finding is consistent with the weakening of Ca$^{2+}$-binding to EF4, which is the molecular reason for persistent stimulation of GC1 at physiological Ca$^{2+}$. These theoretical predictions are in excellent agreement with biochemical and fluorescence titration experiments described earlier.

DISCUSSION

Autosomal dominant cone-rod dystrophy is a heterogeneous disease caused by several diverse gene defects. At least 13 loci...
linked to cone–rod dystrophy are listed in RetNet (http://www.sph.uth.tmc.edu/RetNet/ provided in the public domain by the University of Texas Houston Health Science Center, Houston, TX), 6 of which show an autosomal dominant inheritance (Table 2). Two of these genes (GUCA1A and GUCY2D) encode GCAP1 and GC1, respectively, which are directly involved in synthesis of cGMP and phototransduction. Other CORD genes encode a transcription factor (CRX), a PDE chaperone (AIPL1), a structural protein (peripherin/RDS), a protein regulating synaptic exocytosis (RIMS1), or a protein with unknown function (HRG4). In the GCAP1 gene, three mutations (Y99C, E155G, and I143NT) have been linked to adCD, and one (P50L) has been suggested to cause a more severe form of retinal degeneration (adCORD). In GCAP-Y99C, a21 a hydrophobic residue (Y) flanking the EF3 Ca2+-binding loop was replaced by a polar amino acid (Cys), thus distorting the EF3 motif.50,51 Transgenic mice expressing GCAP1-Y99C were recently generated,24 but displayed a dominant CORD phenotype rather than a CD, as observed in humans. In the GCAP1-E155G mutant,19 an acidic residue (E), 100% conserved in all EF hand motifs, was replaced in EF4 by a neutral residue, P351Δ12. This is surprising, and further characterization is required. The gain of function consists of the level of cytoplasmic cGMP that is established in the dark. In summary, all GCAP1 mutations identified so far and linked to cone–rod dystrophy (adCORD) in vitro,61 which is consistent with the location of P50 in the N-terminal half between EF1 and -2. However, GCAP1-P50L shows a marked increase in susceptibility to protease degradation and a reduction in thermal stability, as observed by CD spectroscopy.25 Its lower stability could reduce its cellular concentration, as has been observed for GCAP1 in GC1+-/- animals.52,62 Reduction of GCAP1 levels, however, should have no impact on the survival of retinas, since GCAP1+/– and GCAP1–/– mice have morphologically normal retinas. Either GCAP1-P50L causes adCORD by an entirely different mechanism involving an unknown dominant negative effect of partially degraded mutant GCAP1-P50L, or the mutation represents a nonpathogenic rare polymorphism.

We describe an adCORD phenotype based on a conservative substitution of a hydrophobic residue (L151), located in the Ca2+-binding loop of EF4, by another hydrophobic residue (F), which is not much bulkier than L. This is surprising, and for this reason we investigated the consequences of this mutation rigorously by biochemical, biophysical, and molecular modeling techniques. The pathogenic properties of the GCAP1-L151F mutations described in this article are supported by several independent observations. First, the mutation decreases the Ca2+ sensitivity of GC stimulation, an effect also seen in Y99C, E155G, and I143NT mutations.22 The change in sensitivity leads to persistent stimulation of GC1 at high “dark” Ca2+ and to disease due to gain of function. Second, recombinant GCAP1-L151F is susceptible to proteolysis, because it is unable to assume a compact Ca2+-bound conformation essential for inactivity at dark Ca2+ (Fig. 2D). Third, MDs of WT-GCAP1 and L151F-GCAP1 confirmed that a significant change in the structure of mutant GCAP1 influences the binding of Ca2+ in EF4 and EF2 (Fig. 4). Although residue 151 in EF4 is forming a b-sheet with EF3, no hydrogen bond is broken after mutation and during the entire simulation. Fourth, the L151F mutations have been independently identified in a large Utah pedigree with dominant cone dystrophy.63 The reason for the discrepancy in phenotype (adCD versus adCORD) is unclear, but anomalies in the rod response may be slow in developing and may depend on the genetic background.

In summary, all GCAP1 mutations identified so far and linked to retinal disease (Y99C, E155G, I143NT) are inherited in a dominant fashion, and affect Ca2+ coordination and Ca2+ sensitivity (exception P50L which may be a rare polymorphism). The EF hand mutants display a gain of function at physiological high (dark) [Ca2+]i, at which WT-GCAP1 normally would be inactive. The gain of function consists of persistent stimulation of photoreceptor guanylate cyclase leading to elevated levels of cGMP in the cytoplasm of rod and cone outer segments. It is not surprising that GCAP1 mutants disrupting the interface between GCAP1 and guanylate cyclase associated with retina disease have not been identified, since mice lacking GCAP1 and -2 display no measurable retina degeneration.52,54 It is currently not understood why some mutations (E155G, Y99C) lead to adCORD, whereas L151F causes a more severe adCORD phenotype. This may depend on the degree of stimulation in the dark-adapted photoreceptors, and the level of cytoplasmic cGMP that is established in the dark. Higher levels would be considered more cytotoxic, but not

Table 2. Genes Linked to Autosomal Dominant CORD

<table>
<thead>
<tr>
<th>Gene</th>
<th>Locus</th>
<th>Protein</th>
<th>Mutation</th>
<th>Disease</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>GUCA1A</td>
<td>6p21.1</td>
<td>GCAP1 (guanylate cyclase activating protein 1)</td>
<td>P50L</td>
<td>adCORD</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Y99C</td>
<td>adCD</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>E155G</td>
<td>adCD</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>I143NT</td>
<td>adCORD</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>L151F</td>
<td>adCORD</td>
<td></td>
</tr>
<tr>
<td>RDS</td>
<td>6p21.2</td>
<td>Peripherin 2</td>
<td>V200E</td>
<td>adCORD</td>
<td>55</td>
</tr>
<tr>
<td>RIMS1</td>
<td>6q13</td>
<td>Regulating of synaptic membrane exocytosis</td>
<td>R844H</td>
<td>adCORD</td>
<td>56</td>
</tr>
<tr>
<td>AIPL1</td>
<td>17p13.2</td>
<td>AIPL1 (arylsulfonamide-interacting receptor</td>
<td>P351Δ12</td>
<td>adCORD</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td></td>
<td>protein-like 1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GUCY2D</td>
<td>17p13.1</td>
<td>Guanylate cyclase 1 (GCCE in mouse)</td>
<td>R883C</td>
<td>adCORD</td>
<td>29, 58</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>E837D</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>T839M</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>L57ter</td>
<td>adCORD</td>
<td>59</td>
</tr>
<tr>
<td>UNC119</td>
<td>17q11.2</td>
<td>HRG4 human homolog of C. elegans unc119 protein</td>
<td>E60A</td>
<td>adCORD</td>
<td>60</td>
</tr>
<tr>
<td>CRX</td>
<td>19q13.32</td>
<td>Cone-rod otx-like photoreceptor homeobox</td>
<td>A196 +1Arg41Tnp</td>
<td>adCORD</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>transcription factor</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The seven CORD genes that were identified and cloned are listed. Only mutations leading to autosomal dominant CORD phenotype are shown. The list of mutations is not comprehensive; additional mutations may exist.
quite as high levels as are thought to lead to milder phenotypes. Transgenic mice expressing mutant GCAPs and mimicking the human disease may be useful in answering these questions.

References

