Dynamic Changes in Ocular Zernike Aberrations and Tear Menisci Measured with a Wavefront Sensor and an Anterior Segment OCT

Jingjing Xu, Jinhua Bao, Jun Deng, Fan Lu, and Ji C. He

PURPOSE. To measure dynamic change characteristics of spatial and temporal variations in the post-blink tear film of normal eyes.

METHODS. A wavefront sensor was used to measure dynamic changes in wavefront aberrations, up to the seventh order, for the lower tear meniscus for 10 seconds in a group of 33 normal young adults. Tear menisci were measured with an anterior segment optical coherence tomography (AS-OCT) system and tear film break-up times (TFBUTs) were determined.

RESULTS. Systematic changes in tear menisci areas during the 10-second post-blink period (R² = 0.933, P < 0.0001) and spherical aberrations (R² = 0.879, P = 0.0002) occurred during the 10-second post-blink period. Both lower tear meniscus height and area increased by 10 seconds compared with the initial levels (P < 0.0001 for each). The change of vertical coma had significant correlation with the increase of lower tear meniscus areas during the 10-second post-blink period (R² = 0.181, P = 0.014). Subjects with TFBUTs < 15 seconds had significantly increased main axis astigmatism, vertical coma, and spherical aberrations by 10 seconds. Subjects with longer TFBUTs did not have any significant wavefront aberrations during that period.

CONCLUSIONS. Systematic changes in some Zernike aberrations after blinking are associated with changes in tear menisci and TFBUT. There was a substantial individual variation in dynamic changes of Zernike aberrations, suggesting the necessity to explore individual differences in tear quality and tear performance. Dynamic wavefront measurement combined with anterior segment optical coherence tomography could provide a useful tool to understand spatial and temporal processes of the tear film in clinical practice. (Invest Ophthalmol Vis Sci. 2011;52:6050 – 6056) DOI:10.1167/iovs.10-7102

The optical system of the human eye is a component structure with the most anterior optical part consisting of a thin layer of tear film. The tear film is formed by blinking, through which tears that have accumulated in the tear menisci are spread over the corneal epithelium. The geometrical structure of the tear film, however, is by no means stable but constantly changes over time. Immediately after a blink, the tear film builds up quickly and then starts to thin due to a complex process involving evaporation, dewetting, surface tension gradients, and pressure-gradient flow of the tears. When the eye is opened for a sufficiently long period, the tear film breaks up at spots over the corneal surface. Both dynamic thinning and break-up of the tear film degrade the optical quality of the eye and consequently disturb visual performance. Break-up of the tear film can also generate problems for the cornea because the tear film moistens the cornea and protects it from invasion of microbes. Therefore, the study of tear film dynamics is of importance not only for understanding the optics of the eye but also for healthy care of the cornea.

Characterizing dynamic changes of the tear film, however, is challenging because the tear film is very thin, measured in micrometers, and it changes within seconds. In addition, the shape of the tear film is three-dimensionally irregular and locally inhomogeneous in its thickness, perhaps associated with the irregular shape of the anterior corneal surface. The irregularity of the tear film contributes to local differential changes from one area to another and makes it very difficult to be quantified.

Temporal change of the tear film has traditionally been assessed by its break-up time (BUT). In clinical practices, invasive observation with a slit-lamp combined with fluorescein instillation is still a widely used technique, while other methods are believed to be more precise due to their noninvasive nature. Further, the break-up time measurement does not provide any information about the temporal change of the tear film during the post-blink period, and it does not help to explain the localized nature of the tear film break-up.

Recent progress in optical coherence tomography (OCT) has made possible the in vivo imaging of tear film thinning. By using a real-time anterior segment OCT with an ultra-high axial resolution (approximately 3.0 μm), Palakuru et al. found that the tear film thickness increases significantly after each blink and then decreases when the eye blinked again in either a normal- or delayed-blinking paradigm. Under the delayed-blinking paradigm, tears in both upper and lower tear menisci increased in height and area after the eye was opened for a while. A recent study on normal eyes showed that the tear film thickness and the lower tear meniscus dimensions are correlated with the viscosity of artificial tears.

Corneal topography is a traditional technique for assessing corneal geometrical properties by making use of the light reflected from the tear film. Therefore, it is now possible to determine tear film stability from topographic variations. By continuously monitoring local variation in corneal power with a time resolution of one second, Goto et al. found that the tear film was more stable in the normal eyes than in the dry
eyes, as would be expected.14 Although the estimate of overall variation in corneal power provides a general measure of tear film stability, the result still did not show detail patterns of the local change in the tear film. By applying wavefront analysis of corneal measurements, Montes-Mico et al. were the first to successfully assess dynamic change in tear film shape from variations in corneal Zernike aberrations.6 They found that after a blink, the tear film shape progressively changed from prolate to oblate. Rotationally asymmetric change in the tear film was also present due to a temporal variation in coma-like aberrations.

Recently, the Hartmann-Shack (HS) wavefront technique was used to continuously test dynamic variation in wavefront aberrations of the whole eye as an indirect measurement of the tear film performance. Continuous measurement of wavefront aberration is capable of assessing the tear film behavior because the tear film contributes to wavefront aberrations of the whole eye.7,17,18 Spatial change in the tear film is reflected in variation of wavefront aberrations as measured by the wavefront sensor. In a recent study,19 the HS wavefront sensor was combined with an anterior segment OCT (AS-OCT) system to simultaneously assess dynamic changes of the tear film. Changes in the root-mean-square (RMS) of the wavefront aberrations were positively correlated with the changes in tear meniscus dimensions in both normal and dry eye groups. However in that study, the relationship between the OCT measurements and the individual Zernike aberrations was not tested, and thus the specific spatial pattern of the tear film change was not examined. The aim of this study was to assess the dynamic change in Zernike aberrations of the whole eye in young normal subjects. Further, we explored the relationship of the changes in individual Zernike aberrations with changes in OCT measurements by using both AS-OCT and HS wavefront sensing.

Subjects and Methods

Subjects

Thirty-three healthy subjects who were students from the Optometry and Ophthalmology School in Wenzhou Medical College, Zhejiang, China, were enrolled in this study. None of them wore contact lenses in the preceding six months, and none had any eye complaints. Each one was given a full explanation of the whole procedure and signed an informed consent statement before participating in this study. This research was conducted in accordance with the tenets of the Declaration of Helsinki and the guidelines of Wenzhou Medical College Review Board. The subjects (15 male and 18 female) had a mean ± SD age of 23.0 ± 1.9 years (range, 21 to 29 years). Each subject completed a McMonnies dry eye survey, and for each, the total score was much lower than the critical score of 15. The mean score was 4.3 ± 2.9. Slit-lamp biomicroscopy and retinoscopy was performed for each subject, and no subject had any ophthalmic abnormalities. No histories of ocular diseases, trauma, or abnormal best corrected visual acuity were reported. The right eye of each subject was tested by the same examiner between 10:00 AM and 4:00 PM in a dim room where the temperature and humidity were controlled.

Measurement of Wavefront Aberration

Wavefront aberration was measured using a HS wavefront aberrometer (WASCA Asclepion Zeiss Wavefront Analyzer; Carl Zeiss Meditec AG, Jena, Germany). A multifluce acquisition mode was set to acquire the HK image at a speed of one test per second during a one-minute period. The subjects were asked to keep their heads stable and to hold their eyes open as long as possible once the test was started. During the test, each subject was instructed to fixate on a red target inside the machine while his/her eye was monitored by a video camera. At the end of the test, the examiner would check the blink recorded by the video camera and also the blink recorded by the wavefront sensor. If the blink numbers did not match, the data were excluded and another test was done 5 minutes later, but no more than three tests were taken within an hour.

Measurement of Lower Tear Menisci

After the wavefront measurement, a custom-built real-time AS-OCT system, previously described by Shen et al.,20,21 was used to measure the tear menisci. The system had an optical resolution of < 10 μm, and the precision of the tear dimension measurements was approximately 3.7 μm.11,20 The light source was an infrared superluminescent light-emitting diode with a wavelength of 1310 nm and 60 nm bandwidth. The scan width was up to 15 mm at eight frames per second, and the scan depth was 2 mm in air. OCT images were continuously recorded at seven or eight frames per second, and the recording started when the first clear reflection of the central cornea was obtained on the monitor. Both upper and lower tear menisci were continuously measured right after a normal blink until the next blink. For some subjects, the cross-sectional images of upper tear menisci were not always clearly recorded. This occurred when the subject’s fixation was in the same direction as the aberration measurement. However, the lower tear menisci were always clearly imaged. A whole interblink interval was recorded, and the three clearest images in each second were processed for the first 10 seconds. Image processing was described previously,22 and the same method was used to identify three edge touchpoints for deriving the lower tear meniscus height (LTMH) and lower tear meniscus cross-sectional area (LTMA).

Measurement of Tear Film Break-up Time

After wavefront and OCT imagery were completed, tear film breakup time (TFBUT) was measured by noninvasive and invasive tests. Noninvasive tear film breakup time (NITFBUT) was determined first by a tearescope (Tearescope Plus, Keeler, Windsor, UK) as previously described.23,24 At least five minutes later, a regular invasive tear film breakup time (ITFBUT) was determined with fluorescein dye. Both NITFBUT and ITFBUT were measured three times.

Statistical Analysis

Zernike aberrations within the 6.0 mm pupil diameter were derived from the wavefront sensor. Differences in mean values were tested using a paired sample t test. Correlations between measurements were analyzed with Pearson correlation analysis. These analyses were performed with statistical software (Statistical Procedures for the Social Sciences version 13.0 for Windows XP, SPSS Inc., Chicago, IL, USA.).

Results

Tear Film Break-up Time

For this study population, the NITFBUT was 22.6 ± 17.86 seconds, which was not significantly different from the ITFBUT, 16.7 ± 13.40 seconds (P = 0.135). The NITFBUT was positively correlated with the ITFBUT (R2 = 0.526, P < 0.001).

Dynamic Changes in Zernike Aberrations

Our subjects were asked to keep their eyes open as long as possible once the experiment was started. The duration of the open eye period varied from one subject to another. Subjects with longer NITFBUTs and ITFBUTs tended to have longer interblink intervals (NITFBUT: R2 = 0.345, P < 0.001; ITFBUT: R2 = 0.301, P = 0.001). Every subject was able to maintain an open eye for at least 10 seconds before blinking; therefore we used data from that interval for further analysis.

For each wavefront measurement, 35 terms of Zernike coefficients of up to the seventh order were derived. Only Zernike aberration terms of the second order (Z\textsubscript{2}, oblique astigmatism; Z\textsubscript{2}, main axis astigmatism), third order (Z\textsubscript{3}, \textsubscript{3}, \textsubscript{3},
vertical coma; Z_3^{-1}, horizontal coma; Z_3^{-3} and Z_3^3, trefoil), and fourth order (Z_4^0, spherical aberration) make the largest contributions to the overall wavefront aberration. Therefore, we determined the results mainly for these aberration terms.

There was a substantial individual variation in the dynamic change of the Zernike aberrations. Dynamic changes occurred in Zernike coefficients of the second order (Z_2^2 and Z_2^{-2}, the astigmatism terms; Fig. 1, left panel), third order (Z_3^{-3}, Z_3^{-1}, Z_3^1, and Z_3^3, the trefoil and coma terms; Fig. 1, middle panel), and fourth order (Z_4^0, the spherical aberration term; Fig. 1, right panel) during the first 10-second postblink period. The data were assigned individual symbols for the different Zernike terms at each second, and the change trend was fitted with a second order polynomial function from the first second of the test. For some subjects, such as SWY and ZA, there were obvious changes in the Zernike terms (Fig. 1), especially in Z_3^{-3}, Z_3^{-1}, and Z_4^0, while other subjects, such as XCB and FJX, showed less variation.

In spite of substantial individual variation in Zernike aberration changes, systematic changes in some of the Zernike terms were observed for the 33 subjects (Fig. 2). There was a significant change toward a more negative direction in the main axis astigmatism Z_2^2 ($R^2 = 0.935, P < 0.0001$; Fig. 2, left panel) for this group of subjects while the oblique astigmatism Z_2^{-2} was quite stable. The trefoil term Z_3^{-3} and vertical coma Z_3^{-1} both increased significantly during the 10-second period (Z_3^{-3}: $R^2 = 0.854, P = 0.003$; Z_3^{-1}: $R^2 = 0.935, P < 0.0001$; Fig. 2, middle panel). Meanwhile the trefoil term Z_3^3 and horizontal coma Z_3^1 were quite stable without showing any significant change. Spherical aberration Z_4^0 for this group of subjects increased significantly ($R^2 = 0.879, P = 0.002$; Fig. 2, right panel). The mean value of Z_2^2 decreased by 0.0262 μm by 10 seconds ($P = 0.022$).

FIGURE 1. Representative changes in seven Zernike aberrations during the 10-second postblink period for four normal subjects (SWY, ZA, XCB, and FJX). Left: dynamic changes of Z_2^2 (oblique astigmatism) and Z_2^{-2} (main axis astigmatism). Middle: dynamic changes of third order (trefoil, vertical coma, horizontal coma, and trefoil respectively). Right: dynamic changes of Z_4^0 (spherical aberration).
while the vertical coma \(Z_3\) was significantly increased by 0.0275 \(\mu\)m \((P = 0.019)\). The mean values of both \(Z_3\) and \(Z_4\) at the 10-second point were also different from their corresponding initial values, but the differences were not significant \((P = 0.109\) and \(P = 0.226\), respectively).

For all subjects, the variation of \(Z_4\) was negatively correlated with NITFBUT and ITFBUT \((R^2 = 0.127, P = 0.042; R^2 = 0.147, P = 0.027\), respectively). Furthermore, ITFBUT was negatively correlated with changes of \(Z_4\) \((R^2 = 0.150, P = 0.039)\).

We divided our subjects into subgroups according to TFBUTs. One group was composed of subjects \((n = 16)\) with NITFBUT shorter than 15 seconds, and the other group was composed of subjects \((n = 17)\) with NITFBUT equal to or greater than 15 seconds. There were differences in dynamic behavior of the Zernike aberrations of the two subgroups (Fig. 3).

For the group with shorter NITFBUTs (Fig. 3A), \(Z_2\) \((P = 0.024)\) and \(Z_6\) \((P = 0.009)\) at 10 seconds were significantly higher than the initial values. In contrast, the aberrations were quite stable for the group with longer NITFBUTs (Fig. 3B)

Except for \(Z_4\), there were also variations of the total root-mean-square (tRMS) of the aberrations from the second to seventh orders during the first 10 seconds (Fig. 4). For all 33 subjects, the tRMS slightly decreased in the early seconds after blinking and then gradually increased to a level higher than that at the beginning \((P = 0.032;\) Fig. 4, left panel). Subjects with shorter NITFBUTs had a significant increase in tRMS during the entire 10-second test period \((P = 0.019;\) Fig. 4, middle panel). For subjects with longer NITFBUTs, the tRMS did not increase until the ninth second (Fig. 4, right panel). The results could imply that the systematic changes in Zernike aberrations for the entire group, as observed in Figure 2, were mainly contributed from the subjects with relatively shorter NITFBUT.

Dynamic Changes in Lower Tear Menisci

In general, LTMHs and LTMAs increased with time during the 10-second postblink interval for the majority of our subjects. As an example, dynamic change in LTMH and LTMa for subject LX was illustrated in Figure 5, where the increase in tear dimensions with the time was clearly exhibited \((R^2 = 0.797, P = 0.004\) for LTMH; \(R^2 = 0.924, P < 0.0001\) for LTMa). But, for our subjects, not everyone presented an increase in LTMH and LTMa, especially

![Figure 2](image2.png)
Figure 2. Mean changes in seven Zernike aberrations for 33 subjects. Left: dynamic changes of \(Z_2\) and \(Z_2\). Main axis astigmatism \(Z_2\) increased significantly by 10 seconds \((P < 0.0001)\). Middle: dynamic changes of \(Z_3\), \(Z_3\), \(Z_3\), and \(Z_3\). Trefoil \(Z_3\) and vertical coma \(Z_3\) increased significantly by 10 seconds \((P < 0.005)\). Right: significant increase of \(Z_4\) by 10 seconds \((P < 0.005)\).

![Figure 3](image3.png)
Figure 3. Effect of TFBUT on Zernike aberrations. (A) In subjects with NITFBUTs < 15 seconds, \(Z_2\) and \(Z_2\) increased significantly by 10 seconds. (B) In subjects with NITFBUTs ≥ 15 seconds, none of the Zernike coefficients changed significantly by 10 seconds.
those with a relatively high baseline value of the LTMA. Overall, both LTMH and LTMA increased significantly by the end of the postblink interval (paired t test, $P < 0.0001$ for both, Table 1).

There was no significant correlation between the change in LTMA and the baseline LTMA. There was a weak negative correlation between the baseline LTMA and the ratio of LTMA to the baseline LTMA. There was a weak negative correlation between the baseline tear film and the faster change in the tear film might happen for the eyes with less baseline tear film.

The ITFBUT was positively correlated with the baseline LTMA ($R^2 = 0.389$, $P = 0.030$). While the correlation between the NITFBUT and LTMA was also positive, it was not quite significant ($R^2 = 0.268$, $P = 0.085$). There was no significant correlation between the change in LTMA and the NITFBUT or ITFBUT.

Relationship between Changes in Zernike Aberrations and Tear Menisci

For all subjects, there was no significant correlation between the baseline LTMA and the change of Zernike aberrations for any Zernike term. Because both LTMA and LTMH and some Zernike coefficients had similar increasing trends during the 10-second postblink interval, correlations between them were analyzed. The percent increase of LTMA and the absolute increase of Z_{-1}^{-1} were significantly correlated ($R^2 = 0.181$, $P = 0.014$; Fig. 6). The percent increase of LTMA did not correlate with the change of Z_2^2 ($R^2 = 0.057$, $P = 0.183$) but did approach significance with Z_4^0 and Z_4^0 ($R^2 = 0.088$, $P = 0.093$; $R^2 = 0.095$, $P = 0.081$ for Z_4^0, respectively).

We divided our subjects into two groups according to baseline LTMAs. One group was composed of subjects with baseline LTMA $<20,000$ μm², and the other group was composed of subjects with baseline LTMA $>20,000$ μm². This produced approximately an equal number of subjects in each group. In the group with the smaller LTMA, Zernike aberrations Z_2^2 and Z_4^0 were significantly higher at the 10-second point than their initial values ($P = 0.054$, $P = 0.032$ respectively; Fig. 7). For the group with larger LTMAs, there were no significant differences between the aberrations at 10 seconds and the beginning for any of the Zernike terms.

DISCUSSION

The structure of the tear film over the anterior corneal surface is neither temporally stable nor spatially regular. Adequate techniques with high time resolution and the ability to spatially assess irregular shapes are, therefore, required to precisely and accurately test tear performance. Wavefront analysis can assess complex spatial and temporal variation in optical structure, and thus provide a very interesting and useful method to investigate the tear behavior. However, in the majority of previous studies, analysis of wavefront dynamics was mainly focused on the RMS of the overall Zernike terms or the RMS of several specific Zernike terms, such as spherical-like or coma-like aberrations. In this study, we also analyzed the RMS change after blinking, as done in previous studies, and found similar patterns of RMS changes in the wavefront aberrations. However, while the RMS provides useful information about stability of the tear film, change in it does not specify local changes of the tear film that are already revealed in the changes of individual Zernike terms. Thus, the results of RMS analysis were not helpful in understanding the spatial variation of the tear film.

From the corneal Zernike aberrations derived from wavefront analysis, Montes-Mico et al. found systematic changes of the corneal Zernike spherical aberration during the postblink period. This indicated that the tear surface changed from prolate to oblate in shape after blinking. This type of tear film change was attributed to the thinning of the tear film more rapidly at the central area than at the periphery due to a greater rate of evaporation at the center of the palpebral aperture. In our study, from the measurements of wavefront aberrations in the whole eye, we found a trend for increased Zernike spherical aberration during the first 10 seconds of the postblink period. This result is consistent with the finding by Montes-Mico et al. and supports their
It was accompanied with a decrease in the trefoil (Z3) study for our subjects during the 10-second postblink interval, and the inferior corneal area due to the effect of gravity, as suggested due to a differential thinning of the tear film between the superior and inferior corneal area due to the effect of gravity, as suggested by Maeda.17 Thus some individuals with fast changes in Zernike tear quality, and hence its behavior, differed from individual to individual with shorter TFBUTs. The results suggest that the change in Zernike aberrations is associated with changes in tear menisci and LTMA clearly demonstrated the spatial and temporal pattern of tear film processing over the corneal surface during the postblink period. Therefore, the wavefront measurements combined with AS-OCT could be very useful to study the tear performance in both eye research and clinical care. Both techniques are noninvasive and fast. A combination of the two techniques could provide useful diagnostics in clinical practices, especially in wavefront-guided laser refractive surgery and contact lenses.

A methodological limitation of our study is that the measurement of wavefront aberrations and tear menisci were not simultaneously performed, so there would be concerns in associating the two measurements at different unmatched time periods. It would be better to simultaneously test both properties, and we are going to do so in a future study. For now, we have tested the repeatability of the Zernike aberrations for subjects who had more than two blanks within the one-minute test period. There was a very high correlation between the measurements from the first interblink interval and the second interval. For example, the correlations for subject ZA were over 0.8 for the main Zernike terms (R2 = 0.910, P < 0.001 for Z2, R2 = 0.743, P = 0.001 for Z3, R2 = 0.841, P < 0.001 for Z3). So we believe the pattern of tear change in a single eye is quite repeatable. Therefore, our measurements are sufficiently valid to be used to explain tear film processes.

In summary, for whole eyes of young normal subjects, we observed systematic changes in Zernike aberrations after blinking. These changes were associated with changes in tear menisci and TFBUT. The results confirmed observations in previous studies on spatial and temporal changes in the tear film and thus support the relevant theoretical explanations of dynamic tear processes. There were substantial individual variations in dynamic changes of the Zernike aberrations that were associated with changes in tear dimensions. The results suggest the necessity of exploring individual differences in tear quality and tear performance among normal eyes. Dynamic wavefront measurement combined with the AS-OCT for the assessment of tears at the tear meniscus could provide a useful tool to understand spatial and temporal processes of the tear film in clinical practices.
FIGURE 7. Effect of LTMA on Zernike aberrations. (A) For subjects with LTMA <20,000 μm², Zernike aberrations Z22 and Z31 increased significantly (P < 0.05) by 10 seconds. (B) For subjects with LTMA >20,000 μm², none of the changes in Zernike aberrations were significant.

References

