The Role of Substance P in the Pathogenesis of Pterygia

Jeanie Chui, Nick Di Girolamo, Minas T. Coroneo, and Denis Wakefield

PURPOSE. Pterygium is a prevalent ocular surface disorder thought to be triggered by chronic ultraviolet damage to the limbus. One of the enigmatic features of pterygium is its wing-like shape, and the mechanism(s) supporting its centripetal growth remain to be elucidated. Because the growth pattern of pterygium mirrors the radial arrangement of corneal nerves, the authors propose that neuropeptides may facilitate its directional growth. This hypothesis prompted an investigation of the role of the sensory neuropeptide substance P (SP) and its receptor (NK₁ receptor) in directing cell migration in pterygia that may explain the characteristic growth pattern.

METHODS. Immunohistochemical analysis for SP and the NK₁ receptor was performed on five pterygium specimens with corresponding autologous conjunctiva and limbus. Migration of pterygium epithelium, fibroblasts, and vascular endothelial cells toward SP was assessed by using a modified Boyden chamber.

RESULTS. SP and NK₁ receptors were localized to infiltrating fibroblasts, mononuclear cells and the epithelia of pterygium, conjunctiva, and limbus, with elevated NK₁ receptor staining observed in pterygia. SP at nanomolar concentrations induced cell migration in pterygium fibroblasts and vascular endothelium in a dose-dependent fashion, which was inhibited by an NK₁ receptor antagonist. Pterygium epithelial cells were not migratory in these experiments.

CONCLUSIONS. For the first time, this study showed the presence of NK₁ receptor in pterygia and that SP is a potent chemoattractant for pterygium fibroblasts and vascular endothelial cells, implying that SP may contribute to the shape of pterygia through its profibrogenic and angiogenic action. (Invest Ophthalmol Vis Sci. 2007;48:4482–4489) DOI:10.1167/iovs.07-0123

Pterygium is a prevalent ocular surface disease thought to be triggered by excessive UVB exposure and damage to limbal stem cells¹ leading to aberrant wound-healing responses that are mediated by cytokines, growth factors, and matrix metalloproteinases.² Despite extensive research, certain unique aspects of pterygium pathogenesis remain unexplained. In particular, the mechanism for the centripetal growth pattern that gives rise to its wing-like appearance has not been determined. In an attempt to explain this phenomenon, we considered possible signals that govern centripetal migration in normal corneal epithelial cells as summarized by the XYZ hypothesis.³ In the past, several theories have been proposed to model centripetal migration, including population pressure from the peripheral cornea,⁴ preferential desquamation of central corneal epithelium,⁵ chemical signals from the stroma,⁶ and electrical cues.⁷ Adding to these theories, we hypothesized that corneal nerves may be involved, since the direction of epithelial cell movement follows the course of radial corneal nerves.⁸,⁹ Sensory corneal nerves express several neuropeptides, including substance P (SP), neurokinin A (NKA), calcitonin gene-related peptide (CGRP), pituitary adenylate cyclase-activating peptide (PACAP), and secretoneurin (SN).⁸,¹⁰,¹¹ Some of these may provide signals for cell migration, given that sensory denervation results in delayed corneal wound healing, recurrent erosions, and randomly arranged and poorly attached epithelial cells.¹²,¹³ Sympathetic denervation, however, caused increased epithelial thickness, edema, conjunctival hyperemia, stromal vascularization, enlarged corneal nerves, and periorbital pain.¹⁴,¹⁵ In addition, the focusing effect of the cornea, which concentrates UV light onto the limbus,¹ can injure corneal nerves as they leave the limbal plexus to enter the cornea proper. As sensory nerves are reported to participate in wound healing, inflammation, and cutaneous photo-aging,¹⁶,¹⁷ they could play similar roles in the UV-injured cornea and be responsible for directing cell migration in pterygia.

Sensory neuropeptides exert trophic influences on the normal cornea, but also play roles in inflammation and corneal wound healing.¹²,¹³,¹⁸,¹⁹ Therefore, we choose to investigate SP as a signal for cell migration in pterygium, given its reported roles in corneal cell migration, proliferation, and wound healing.¹⁹–²² SP belongs to the tachykinin family of peptides and is a product of the TAC1 gene that also encodes for NKA, neuropeptide K, and neuropeptide γ. Tachykinin receptors are members of the G protein-coupled receptor (GPCR) family and in mammals, NK₁, NK₂, and NK₃ have been identified where NK₁ is the preferred receptor to SP and hemokinin, whereas NK₂ and NK₃ preferentially bind to NKA and neurokinin B, respectively.²³ In the cornea, SP was first identified in nerves originating from the trigeminal ganglion.²⁴–²⁶ More recent studies also reported the presence of SP in corneal epithelium and keratocytes²⁷ and in normal tears.²⁸ SP exerts its trophic influences in synergy with other growth factors such as insulin-like growth factor (IGF)-I or epidermal growth factor (EGF),²¹,²² where the combination of IGF-I and SP was successfully used to treat corneal diseases such as neurotrophic keratopathy.²⁹–³⁰ Furthermore, the effects of SP may be potentiated by the presence of EGF in pterygia.³¹

The purpose of this study was to identify neuronal signals that could explain the wing-like growth and shape of pterygia. As there are no animal models of pterygia, we used primary cell cultures derived from a pterygium and control tissue to test whether the sensory neuropeptide SP can act as a signal for cell migration. The modified Boyden chamber cell migration assay was chosen to provide a gradient of chemoattractant as opposed to the organ-cultured corneal blocks favored by others,²¹,²² in which cell migration could be a function of proliferation and sliding movement of epithelium, similar to that which occurs during corneal wound healing. In our cell culture model, SP-induced concentration-dependent migration of pterygium fibroblasts (but not pterygium epithelium) and microvascular endothelium via the NK₁ receptor, implying that SP may function as a mediator of fibrosis and angiogenesis,

From the ¹Inflammatory Diseases Research Unit, Department of Pathology, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, Australia; and the ²Department of Ophthalmology, Prince of Wales Hospital, Sydney, Australia. Submitted for publication January 31, 2007; revised June 21, 2007; accepted August 15, 2007.

Disclosure: J. Chui, None; N. Di Girolamo, None; M.T. Coroneo, None; D. Wakefield, None

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be marked "advertisement" in accordance with 18 U.S.C. §1734 solely to indicate this fact.

Corresponding author: Jeanie Chui, Department of Pathology, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, Australia; j.chui@student.unsw.edu.au.

Copyright © Association for Research in Vision and Ophthalmology
processes that characterize the development of pterygium. Using immunohistochemical techniques, we localized the distribution of SP and NK\(_4\) receptors to resident fibroblasts, infiltrating mononuclear cells and basal pterygium epithelial cells. To our knowledge, this is the first description of the presence and functional significance of NK\(_4\) receptors in this disease.

METHODS

Specimens

Pterygia, limbus, and conjunctiva were obtained from patients undergoing pterygium excision surgery at Prince of Wales Hospital (Sydney, Australia). Institutional ethics committee approval and informed consent was obtained from each patient before tissue collection and complied with the tenets of the Declaration of Helsinki. Tissue was either used to establish primary cell cultures or was formalin fixed and paraffin embedded for histologic assessment.

Cell Cultures

Primary epithelial and fibroblast cultures were established by modifying a previously published method.\(^2\,3\) In brief, epithelium was stripped away from the body of the pterygium during surgery and cultured separately in Eagles minimum essential medium (EMEM) supplemented with 10% fetal bovine serum (FBS), 2 mM L-glutamate, 100 U/mL penicillin, and 100 \(\mu\)g/mL streptomycin, in a six-well plate and left to attach. Epithelial cells migrated from explants between 3 and 5 days and displayed typical cobblestone morphology, as previously described.\(^3\) Fibroblasts migrated from the pterygium body at 7 to 14 days and were identified by their elongated spindle-shaped morphology. The purity of epithelial and fibroblast cultures were established using flow cytometry and epithelial markers, as previously described.\(^2\,3\)

An SV40-transformed human microvascular endothelial cell line (HMEC-1)\(^33\) was a gift from Levon M. Khachigian (Centre for Vascular Research, University of New South Wales [UNSW]). HMEC-1 cells were maintained in MCDB 131 medium supplemented with 10% FBS, 10 ng/mL epidermal growth factor, 1 \(\mu\)g/mL hydrocortisone, 2 mM L-glutamine, 5 \(\mu\)g/mL penicillin, and 5 \(\mu\)g/mL streptomycin and passaged twice weekly.

Neuropeptides and Antagonists

SP and a nonpeptide NK\(_4\) receptor antagonist L-732138 (Sigma-Aldrich, St. Louis, MO) were dissolved in 0.5 M acetic acid and dimethyl sulfoxide (DMSO), respectively. Stock solutions (10\(^{-5}\)M) were aliquoted and stored at \(-20^\circ\)C.

Cell Migration Assays

Migration of pterygium epithelium, pterygium fibroblasts, and HMEC-1 toward SP was investigated by using a modified Boyden chamber method.\(^3\) Subconfluent cultures were harvested using 0.05% trypsin/0.02% EDTA solution, followed by several washes in PBS and binding medium (BM; consisting of 1% BSA in EMEM). Cells were left in BM to recover for 1 hour at 37\(^\circ\)C in a 5% CO\(_2\) incubator before use in migration assays.

A gradient of chemoattractant was set up between the lower wells of a 48-well chamber (Neuro Probe, Inc. Gaithersburg, MD) containing 26 \(\mu\)L of SP (10\(^{-10}\) to 10\(^{-7}\)M), and the upper wells containing cells in BM (2.5 \(\times\) 10\(^4\) in 50 \(\mu\)L per well). A polycarbonate filter (Neuro Probe, Inc.) with 10-\(\mu\)m pores was precoated with 0.5% gelatin in PBS and was used to separate the upper and lower wells. The cells were allowed to migrate toward the chemoattractant in a humidified incubator for 6 hours at 37\(^\circ\)C in the presence of 5% CO\(_2\). Cells that did not migrate were subsequently removed by gentle scraping of the upper side of the membrane, whereas the remaining cells were fixed in methanol and stained with Harris hematoxylin, and the filters were mounted on a glass slide. Cell migration was assessed by counting migrated cells in five high-powered fields (HPFs) per well at 400\(\times\) magnification with light microscopy (BH2 research microscope; Olympus Australia Pty. Ltd., Mount Waverly, Victoria, Australia). Cell migration toward a chemoattractant was normalized to that of BM alone and expressed as a chemotactic index (CI).

Receptor blockade experiments were performed as just described, with the exception that some cells were preincubated for 30 minutes with 0.1 to 10 nM of a nonpeptide antagonist specific to the NK\(_4\) receptor (L-732138)\(^3\) or vehicle (DMSO) before dispensing.

Checkerboard analyses were performed to differentiate between directional migration toward a chemotactic gradient (chemotaxis) and nondirectional or random cell migration (chemokinesis). The chemoattractant gradient that the cells were exposed to was altered by placing different concentrations of SP in both upper and lower wells of the chemotaxis chamber. The cells placed in the upper wells were allowed to migrate as just described.

Immunohistochemical Analysis

Immunohistochemical analysis was performed as previously described. Briefly, formalin-fixed, paraffin-embedded pterygia, limbus, and conjunctiva collected from patients undergoing pterygium excision surgery (\(n = 5\)) were cut (4 \(\mu\)m), dewaxed in xylene, and rehydrated through a graded series of ethanol. Antigen retrieval was performed by heating the sections in 10 mM sodium citrate (pH 6.0) for 10 minutes in a 750-W microwave oven (Panasonic, Osaka, Japan). Sections were incubated in 3% hydrogen peroxide for 10 minutes to quench endogenous peroxidase, washed three times in 1× Tris-buff ered saline (TBS; pH 7.6), then incubated for 20 minutes in 20% goat serum to block nonspecific binding. The sections were incubated in primary antibody (Table 1) overnight at 4\(\circ\)C, followed by several washes in TBS and were then incubated with either a biotinylated goat anti-rabbit or goat anti-mouse IgG (DakoCytomation, Glostrup, Denmark) at a 1:200 dilution for 30 minutes. Tissue sections were washed and incubated in 1:100 dilution of horseradish peroxidase conjugated-streptavidin (DakoCytomation) for 1 hour. Immunoreactivity was visualized by adding 3-amin-9-ethylcarbazole (AEC; Sigma-Aldrich). Sections were counterstained in hematoxylin and mounted in aqueous mounting medium (Crystal Mount; Biomedia Corp., Foster City, CA).

Table 1. Primary Antibodies Used for Immunohistochemistry and Flow Cytometry

<table>
<thead>
<tr>
<th>Antibody</th>
<th>Host</th>
<th>Source</th>
<th>Clone</th>
<th>Catalog No.</th>
<th>Dilution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-human tachykinin receptor 1</td>
<td>Rabbit</td>
<td>NovusBio</td>
<td>—</td>
<td>NLS1339</td>
<td>1:1000</td>
</tr>
<tr>
<td>Anti-substance P</td>
<td>Rabbit</td>
<td>Penlabs</td>
<td>—</td>
<td>T-4107</td>
<td>1:1000</td>
</tr>
<tr>
<td>Anti-human CD3</td>
<td>Rabbit</td>
<td>Dako</td>
<td>—</td>
<td>A0452</td>
<td>1:200</td>
</tr>
<tr>
<td>Anti-human CD20cy</td>
<td>Mouse</td>
<td>Dako</td>
<td>L26</td>
<td>M0755</td>
<td>1:1000</td>
</tr>
<tr>
<td>Anti-human CD68</td>
<td>Mouse</td>
<td>Dako</td>
<td>KPI4</td>
<td>M0814</td>
<td>1:200</td>
</tr>
<tr>
<td>Anti-human mast cell tryptase</td>
<td>Mouse</td>
<td>Dako</td>
<td>AA1</td>
<td>M7052</td>
<td>1:1000</td>
</tr>
<tr>
<td>Mouse IgG1</td>
<td>Mouse</td>
<td>Dako</td>
<td>—</td>
<td>X0931</td>
<td>1:200</td>
</tr>
<tr>
<td>Rabbit immunoglobulin</td>
<td>Rabbit</td>
<td>Dako</td>
<td>—</td>
<td>X0903</td>
<td>1:1000</td>
</tr>
</tbody>
</table>

NovusBio (Novus Biologicals Inc., Littleton, CO); Penlabs (Peninsula Laboratories Inc., San Carlos, CA); Dako (DakoCytomation, Glostrup, Denmark).
Negative control reactions included sections incubated with an isotype antibody and sections incubated without primary antibody.

Flow Cytometric Analysis of NK₁ Receptor Expression in Cell Cultures

Trypsin digested cells were allowed to recover in complete medium at 37°C for 30 minutes, followed by fixation in 2% paraformaldehyde (2 minutes), and permeabilization in cold 100% methanol (10 minutes) and 0.1% Triton X-100/PBS (5 minutes). Cells were subsequently incubated with primary antibody (anti-tachykinin receptor 1 or control rabbit IgG at 1 μg/mL; Table 1), followed by the addition of a secondary biotinylated goat anti-rabbit IgG (DakoCytomation) at 1:200 dilution. Finally, 10 μL of streptavidin-PE (Sigma-Aldrich) was added to the cells. All incubations from primary antibody onward were performed on ice for 30 minutes each, and the cells were extensively washed in 2% BSA-PBS between each reagent. The cells were resuspended in 1% paraformaldehyde and analyzed with a flow cytometer (FACScan with CellQuest Pro software; BD Biosciences, San Jose, CA).

Statistical Analysis

Statistical analysis was performed with commercial software (Prism, ver. 4.00 for Windows; GraphPad Software, San Diego, CA). One-way or two-way ANOVA was used when appropriate.

RESULTS

Effect of SP on Pterygium Fibroblast and Microvascular Endothelial Cell Migration

SP dose dependently induced migration of pterygium fibroblasts (Fig. 1A) and microvascular endothelial cells (Fig. 1B) at concentrations ranging from 10⁻¹⁴ to 10⁻⁶ M with a maximum response at 10⁻⁸ M for both cell types. Pterygium fibroblasts displayed a maximum CI ± SEM of 4.17 ± 0.12, and for vascular endothelial cells the peak CI was 2.53 ± 0.18. Limbal and pterygium-derived epithelial cells attached to the filters but did not migrate, even when the incubation time was extended from 6 hours to 24 hours (data not shown).

Inhibition of SP-Induced Cell Migration in Pterygium Fibroblasts and Vascular Endothelial Cells by an NK₁ Receptor Antagonist

SP-mediated pterygium fibroblast migration was inhibited by the presence of L-732138 at the concentrations tested (0.1–10 nM) compared with the vehicle control DMSO (Fig. 1C). SP-induced microvascular endothelial cell migration was inhibited only with equimolar concentration of NK₁ receptor antagonist at 10 nM (Fig. 1D). The expression of NK₁ receptors in cultured pterygium fibroblasts and microvascular endothelial cells was confirmed by flow cytometry (Fig. 2).

Checkerboard Analysis of SP-Induced Cell Migration

Since the observed cell migration toward SP could be a consequence of chemotaxis or chemokinesis, we performed checkerboard analysis for clarification. If a substance induces a purely chemotactic response, one would expect cell migration to occur only when a gradient is present, with little cell movement in its absence. Whereas, if a substance induces a chemokinetic response, there would be a general increase in...
random cell movement with increased concentration of the substance.

For pterygium fibroblasts, chemokinesis was demonstrated by an increase in the number of cells with increased concentration of SP, despite an absence of a gradient, as shown by the bold data on the diagonal in Table 2. SP also exerted a chemotactic effect as evidenced by increased cell migration with increased concentration of neuropeptide in the lower wells (top row, rightmost column), whereas little cell migration occurred with no chemoattractant in the lower wells (Table 2, leftmost column). Thus, SP exerts both chemokinetic and chemotactic effects on pterygium fibroblasts. Conversely, the effect of SP on HMEC-1 cells was predominantly chemokinetic, as evidenced by an increase in the number of cells with increased concentration of SP in the absence of a gradient (Table 3, bold data). Furthermore, cell migration occurred, irrespective of the direction of the gradient. This was illustrated in cells exposed to SP in the upper wells migrating to lower wells without SP (Table 3, leftmost column). These values were not significantly different to cells not exposed to SP in the upper wells migrating to lower wells with SP (Table 3, top row). Therefore, the chemotactic effect of SP on HMEC-1 is less than its chemokinetic effect.

SP and NK₁ Receptor Immunoreactivity in Pterygia

SP immunoreactivity was observed in pterygia and in the normal ocular surface, where it was localized to the cytoplasm of epithelial cells, keratocytes, pterygium fibroblasts, mononuclear, and vascular endothelial cells (Figs. 3A–E). In normal tissues, SP-immunoreactivity varied, from full-thickness staining in conjunctival epithelium (Fig. 3C) to basal staining in limbal and central corneal epithelium (Figs. 3D, 3E). At the pterygium head (Fig. 3A), basal epithelial SP immunoreactivity was noted and was similar to that observed in the limbus and normal cornea, whereas over the body of pterygia (Fig. 3B), SP staining in the epithelium was full thickness and similar to the conjunctiva. We did not observe any neuronal structures in any tissue sections.

Intense cytoplasmic NK₁ receptor immunoreactivity was observed in pterygium fibroblasts, infiltrating mononuclear cells and basal epithelial cells at the pterygium head with reduced but full-thickness staining in the epithelium covering the pterygium body (Figs. 3F, 3G). In contrast, very little NK₁ receptor expression was noted in the normal ocular surface (Figs. 3H–J), with the exception of NK₁ receptor positive mononuclear infiltrates present in some conjunctival sections (Fig. 3H). An unexpected finding was the absence of NK₁ receptor staining in intraepithelial capillaries and small blood vessels in pterygium and conjunctival specimens (Figs. 3G, 3H).

Clusters of NK₁ receptor–positive mononuclear cells were observed in subepithelial and in perivascular areas within the stroma of pterygia and conjunctival specimens (Figs. 3G, 3H). NK₁ receptor–positive cells typically had an indented and eccentrically located nucleus with prominent nucleolus and variable cytoplasm volume (Figs. 3G, 3H, 3K–N). NK₁ receptor–positive cells did not express CD3, CD20, CD68, or tryptase (Figs. 3K–R) when adjacent sections were stained for these markers, suggesting that they were not T- or B-lymphocytes, monocytes, macrophages, or mast cells, respectively.

Table 2. Checkerboard Analysis of SP-Induced Cell Migration in Pterygium Fibroblasts

<table>
<thead>
<tr>
<th>SP Concentration above the Filter (M)</th>
<th>0</th>
<th>10⁻¹⁶</th>
<th>10⁻¹²</th>
<th>10⁻⁸</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.00 ± 0.12</td>
<td>1.63 ± 0.09</td>
<td>1.68 ± 0.19</td>
<td>1.95 ± 0.14</td>
</tr>
<tr>
<td>10⁻¹⁶</td>
<td>1.22 ± 0.16</td>
<td>1.44 ± 0.06</td>
<td>1.78 ± 0.13</td>
<td>1.68 ± 0.11</td>
</tr>
<tr>
<td>10⁻¹²</td>
<td>1.28 ± 0.16</td>
<td>2.48 ± 0.28</td>
<td>2.15 ± 0.09</td>
<td>3.02 ± 0.16</td>
</tr>
<tr>
<td>10⁻⁸</td>
<td>1.00 ± 0.16</td>
<td>1.61 ± 0.26</td>
<td>1.62 ± 0.11</td>
<td>2.45 ± 0.26</td>
</tr>
</tbody>
</table>

Data are expressed as chemotactic index ± SEM (n = 3).
Our observations, while adding to these findings, suggest that SP activation of NK₁ receptors in vascular endothelial cells, induced a predominately chemokinetic effect, that was partially suppressed with the NK₁ receptor antagonist L-732138. The lack of complete suppression in both fibroblast and endothelial cell migration could be explained by activation of other tachykinin receptors which also bind SP but at a lower affinity.

Encouraging results were obtained by others using the SP analogue [D-Arg¹, D-Trp⁵,⁷,⁹, Leu¹¹]SP, which also antagonizes a broad range of GPCRs and is reported to inhibit tumor-associated angiogenesis and IL-8 induced corneal neovascularization. These results suggest that a nonspecific GPCR antagonist could be more useful as an antiangiogenic agent, given the possible presence of multiple GPCRs and redundant pathways.

SP failed to induce cell migration in pterygium epithelial cell cultures in our experimental conditions (results not shown). This observation could reflect a variation in NK₁ receptor expression as observed in normal corneal epithelium and keratoocytes, and our observations that NK₁ receptors are highly expressed in pterygium fibroblasts compared with pterygium epithelial cells in vivo supports our cell migration data (Figs. 1, 3F). Although epithelial cells expressed NK₁ receptors in vivo, their lack of migration in vitro may be explained by the rapid breakdown of SP by proteases or that additional factors required by epithelial cells to migrate, which may be supplied through epithelial-stromal interactions in vivo are lacking in our in vitro model.

Our immunohistochemical investigations showed SP immunoreactivity in the normal ocular surface and in pterygia. The absence of neuronal elements in our sections may be explained by tissue thickness. It is also possible that surgical specimens of pterygia do not include nerves deep in the corneal stroma. NK₁ receptor immunoreactivity, while present in small amounts in the normal ocular surface, was upregulated in pterygia, where it colocalized to regions with SP staining, with the exception of the vascular endothelium where NK₁ receptor staining was absent. NK₁ receptor upregulation in pterygia may result from stimulation by TNF-α, IL-1β, or SCF. Furthermore, in the pterygia we identified a population of NK₁ receptor-positive cells that did not express markers for T-lymphocytes (CD3), B-lymphocytes (CD20), monocytes or macrophages (CD68), or mast cells (tryptase), and we propose that at his population may represent relatively undifferentiated cells. The presence of NK₁ receptor-positive mononuclear cells in pterygium and autologous conjunctival specimens suggest that these cells may have traveled to the ocular surface from the blood, perhaps attracted by the presence of SP.

From our data, SP could attract fibroblasts and endothelial cells locally while pterygium fibroblasts arise from peripheral fibroadipose tissue posterior to Tenon’s capsule, and new vessel growth from the anterior conjunctival circulation. Alternatively, endothelial cell progenitors (EPCs) from the bone marrow may travel to the cornea where SP may act as a signal to mobilize these progenitors. This idea has merit, because under conditions of inflammation SP is elevated locally in tissues (including tears of patients with pterygia) and systemically in plasma, where it functions as a chemoattractant for immune cells. Although our observations support SP as a chemoattractant for a population of unidentified mononuclear cells (which could include EPCs), the absence of NK₁ receptor staining in the vasculature of pterygia, conflicts with our cell migration data. It is possible that NK₁ receptors became upregulated in vascular endothelium under cell culture conditions or through immortalization. Alternately, NK₁ receptors could become downregulated in vivo once vasculogenesis is complete.

In conclusion, we demonstrated the presence and upregulation of NK₁ receptors in pterygia and that SP could induce migration of pterygium fibroblasts and vascular endothelium, suggesting that the NK₁ receptor may be a useful
target for pharmacological intervention. Given the radial pattern of corneal innervation, we postulate that this in turn may contribute to the characteristic growth pattern observed in pterygia.

Acknowledgments

The authors thank Maria Sarris and Gavin Mackenzie from the Histology and Microscopy Unit, UNSW, for their assistance.

References

28. Watanabe M, Nakayasu K, Iwatsu M, Kanai A. Endogenous sub-
stance P in corneal epithelial cells and keratocytes. Jpn J Ophthal-
and its metabolites in normal human tears. Invest Ophthalmol Vis
30. Nakamura M, Kawahara M, Nakata K, Nishida T. Restoration of
corneal epithelial nerves barrier function and wound healing by sub-
stance P and IGF-1 in rats with capsaicin-induced neurotrophic
31. Brown SM, Lamberts DW, Reid TW, Nishida T, Murphy CJ. Neu-
rotrophic and anhidrotic keratopathy treated with substance P and
insulinlike growth factor 1. Arch Ophthalmol. 1997;115:
926–927.
32. Di Girolamo N, Coroneo M, Wakefield D. Epidermal growth factor
receptor signaling is partially responsible for the increased matrix
metalloproteinase-1 expression in ocular epithelial cells after UVB
33. Di Girolamo N, Tedla N, Kumar RK, et al. Culture and characteri-
1999;83:1077–1082.
34. Ades EW, Candal FJ, Swerlick RA, et al. HMEC-1: establishment of
an immortalized human microvascular endothelial cell line. J In-
35. Kahler CM, Sitte BA, Reinisch N, Wiedermann CJ. Stimulation of
the chemotactic migration of human fibroblasts by substance P.
36. MacLeod AM, Merchant KJ, Brookfield F, et al. Identification of
L-tryptophan derivatives with potent and selective antagonist
38. Chan CM, Chew PT, Alsagoff Z, Wong JS, Tan DT. Vascular pat-
terns in pterygium and conjunctival autografting: a pilot study
using indocyanine green anterior segment angiography. Br J Oph-
39. Kria L, Ohira A, Amemiya T. Immunohistochemical localization of
basic fibroblast growth factor, platelet derived growth factor,
transforming growth factor-beta and tumor necrosis factor-alpha in
40. Lee DH, Cho HJ, Kim JT, Choi JS, Joo CK. Expression of vascular
endothelial growth factor and inducible nitric oxide synthase in
41. Nolan TM, DiGirolamo N, Sachdev NH, Hampartzoumian T,
Coroneo MT, Wakefield D. The role of ultraviolet irradiation and
heparin-binding epidermal growth factor-like growth factor in the
574.
43. van der Zypen F, van der Zypen E, Daickers B. [Ultrastructural
studies on the pterygium. II. Connective tissue, vessels and nerves of
the conjunctival part (author's transl)]. Albrecht Von Graefes
44. Yaylali V, Ohta T, Kaufman SC, Maitchouk DY, Beuerman RW. In
vivo confocal imaging of corneal neovascularization. Cornea.
45. Stapleton F, Chui J, Tan M, Coroneo M. Effect of pterygium on
30(suppl):A26.
46. Feasel AM, Brown TJ, Bogle MA, Tschien JA, Nelson BR. Perineural
542.
up-regulates the TGF-beta 1 mRNA expression of human dermal
fibroblasts in vitro]. Zhonghua Zheng Xing Wai Ke Za Zhi.
receptor and substance P messenger RNA levels increase during
the orientation and frequency of cell division and the rate of
13582.
49. Muller JD, Marfurt CF, Kruse F, Tervo TM. Corneal nerves: struc-
microscopic observation of cell morphology and movement with
102:33–41.
51. Schmid E, Leierer J, Doblinger A, et al. Neurokinin a is a main
constituent of sensory neurons innervating the anterior segment of
52. Troger J, Doblinger A, Leierer J, et al. Secretoneurin in the periph-
53. Gallar J, Pozo MA, Rebollo I, Belmonte C. Effects of capsaicin on
1974.
55. Sweeney DF, Vannas A, Holden BA, Tervo T, Talantra T. Evidence
for sympathetic neural influence on human corneal epithelial fun-
56. Zamarin E, Chowers I, Banin E, Frucht-Pery J. Neurotrophic cor-
eniural endothermal failure complicating acute Herper syndrome.
57. Legat FJ, Griesbach T, Schicho R, et al. Repeated subliminal-
tary ultraviolet B irradiation increases substance P and calcitonin
gene-related peptide content and augments mustard oil-induced
58. Benrath J, Eschenfelder C, Zimmerman M, Gillardon F. Calcitonin
gene-related peptide, substance P and nitric oxide are involved in
cutaneous inflammation following ultraviolet irradiation. Eur
59. Garcia-Hirschfeld J, Lopez-Briones LG, Belmonte C. Neurotrophic
605.
60. Mikulec AA, Tanelian DL. CGRP increases the rate of corneal
re-epithelialization in an in vitro whole mount preparation. J Ocul
61. Reid TW, Murphy CJ, Iwahashi CK, Foster BA, Mannis MJ. Stimu-
lation of epithelial cell growth by the neuropeptide substance P.
62. Nakamura M, Otofu K, Chikama T, Nishida T. The NK1 receptor
and its participation in the synergistic enhancement of corneal
epithelial migration by substance P and insulin-like growth fac-
63. Nakamura M, Nishida T, Otofu K, Reid TW, Mannis MJ, Murphy CJ.
Synergistic effect of substance P with epidermal growth factor on
329.
64. Pennefather JN, Lecci A, Candenas ML, Patak E, Pinto FM, Maggi
CA. Tachykinins and tachykinin receptors: a growing family.
65. Tervo K, Tervo T, Eranko L, Vannas A, Cuello AC, Eranko O.
Substance P-immunoreactive nerves in the human cornea and iris.
neuropeptides of the trigeminal ganglion neurons centrally pro-
jecting through the oculomotor nerve demonstrated by fluorescent
centraretrograde double-labeling combined with immunocytochem-
67. Lehtosalo JI. Substance P-like immunoreactive trigeminal ganglion

57. van der Kleij HP, Ma D, Redegeld FA, Kraneveld AD, Nijkamp FP, Bienenstock J. Functional expression of neurokinin 1 receptors on mast cells induced by IL-4 and stem cell factor. *J Immunol.* 2003;171:2074-2079.

