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1

and Matthias B. Schulze
2,4

OBJECTIVE—The liver-secreted protein fetuin-A induces insu-
lin resistance in animals, and circulating fetuin-A is elevated in
insulin resistance and fatty liver in humans. We investigated
whether plasma fetuin-A levels predict the incidence of type 2
diabetes in a large prospective, population-based study.

RESEARCH DESIGN AND METHODS—A case-cohort study
within the European Prospective Investigation into Cancer and
Nutrition (EPIC)-Potsdam study comprising 27,548 subjects was
designed. We randomly selected a subcohort of 2,500 individuals
of whom 2,164 were diabetes free at baseline and had anamnes-
tic, anthropometrical, and metabolic data for analysis. Of the 849
incident diabetic case subjects identified in the full cohort during
7 years of follow-up, 703 remained for analyses after similar
exclusions.

RESULTS—Plasma fetuin-A levels were positively associated
with diabetes risk after adjustment for age (relative risk [RR] for
extreme quintiles 1.75 [95% CI 1.32–2.31]; RR for 10 �g/ml 1.04
[1.03–1.06]). The association remained significant after adjust-
ment for sex, BMI, waist circumference, and lifestyle risk factors
(RR for 10 �g/ml 1.03 [1.01–1.06]). Adjustment for glucose,
triglycerides, HDL cholesterol, A1C, �-glutamyltransferase, or
high-sensitivity C-reactive protein or mutual adjustment for these
biomarkers did not appreciably change this result (RR for 10
�g/ml full adjusted model 1.05 [1.02–1.07]). Furthermore, fe-
tuin-A was associated with increased diabetes risk particularly in
individuals with elevated plasma glucose.

CONCLUSIONS—Our data suggest that fetuin-A is an indepen-
dent risk factor of type 2 diabetes. Diabetes 57:2762–2767,
2008

T
ype 2 diabetes represents a major global public
health threat and, together with obesity, consti-
tutes an important contributor to the predicted
decline in life expectancy (1). The pathophysiol-

ogy of type 2 diabetes is complex: In addition to impaired
insulin secretion from �-cells, reduced insulin sensitivity
was found to play a predominant role in the pathogenesis
of the disease (2). Several circulating proteins have been
shown to be involved in the regulation of insulin sensitivity
such as adiponectin (3,4), retinol binding protein 4 (5,6),

and fetuin-A (former name for the human protein �2-
Heremans-Schmid glycoprotein, AHSG). Fetuin-A is an
endogenous inhibitor of the insulin-stimulated insulin re-
ceptor tyrosine kinase (7–9). Administration of fetuin-A to
rodents inhibited insulin-stimulated tyrosine phosphoryla-
tion of the insulin receptor and insulin receptor sub-
strate-1 in rat liver and skeletal muscle (7). In addition,
fetuin-A knockout mice exhibited increased insulin sensi-
tivity and were resistant to the adipogenic effect of a
high-fat diet (10), supporting the hypothesis that fetuin-A
is involved in the pathophysiology of insulin resistance in
rodents.

In agreement with these data, we and others have
recently shown that high levels of circulating fetuin-A are
associated with insulin resistance in humans (11,12), sug-
gesting that fetuin-A may represent a novel mechanism
involved in the pathophysiology of type 2 diabetes. In the
present study, we investigated whether circulating fe-
tuin-A predicted the incidence of type 2 diabetes, indepen-
dently of established risk factors, in the large European
Prospective Investigation into Cancer and Nutrition (EP-
IC)-Potsdam Study.

RESEARCH DESIGN AND METHODS

Study population and diabetes ascertainment. The EPIC-Potsdam study
is part of the multicenter prospective cohort study EPIC (13). In Potsdam,
Germany, 27,548 subjects (16,644 women and 10,904 men) were recruited
from the general population between 1994 and 1998. The age range was 35–65
years in women and 40–65 years in men. The baseline examination included
anthropometric measurements, a self-administered validated food-frequency
questionnaire, and a personal interview, including questions about prevalent
diseases, and a questionnaire about sociodemographic and lifestyle charac-
teristics. Follow-up questionnaires were sent out every 2–3 years to identify
incident cases of type 2 diabetes. Complete questionnaires of follow-up round
1 were returned from 96%, of follow-up round 2 from 95%, and follow-up round
3 from 93% of the eligible participants. We also included all questionnaires of
the 4th follow-up round sent out until 31 January 2005, of which 90% were
returned by 31 August 2005. Informed consent was obtained from all partici-
pants, and approval was given by the Ethics Committee of the State of
Brandenburg, Germany.

At baseline, the presence of type 2 diabetes was evaluated by a physician
with information from self-reported medical diagnoses, medication records,
and dieting behavior. In ambiguous cases, the diagnosis was confirmed by
personal communication with the participant and/or the treating physician. All
incident cases of diabetes identified during follow-up were verified by
questionnaires that were mailed to the physicians. Thereby, information about
the date and the type of diagnosis, about the diagnostic tests, and about the
treatment was obtained. Only subjects having had a diagnosis of type 2
diabetes that was confirmed by a physician (ICD10: E11) and a diagnosis date
after the baseline examination were considered as incident cases of type 2
diabetes. Within a mean follow-up time of 7.1 years, 849 subjects developed
incident type 2 diabetes.

A prospective case-cohort study (14) within the EPIC-Potsdam study was
designed. A random subcohort of 2,500 individuals was selected from all
participants of the EPIC-Potsdam study population. Participants with preva-
lent diabetes (n � 120) or without follow-up (n � 58) were excluded from
analyses. Although we considered missing anthropometry as exclusion crite-
ria, none of the subcohort members qualified for exclusion here. Furthermore,
we excluded 112 participants for whom not all biomarkers were available and
46 individuals with either unexplainable low plasma glucose concentrations
(�50 mg/dl) or concentrations within the diabetic range (random glucose
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�200 mg/dl or fasting glucose �126 mg/dl). Altogether, 2,164 participants
were included in the random subcohort for analyses. The process of randomly
selecting a subcohort, together with the appropriate statistics for this type of
research design, renders the results generalizable without measurements of
biomarkers in the entire cohort (15). Of the 849 incident case subjects
identified in the full cohort, 703 remained for analyses after similar exclusion
criteria were applied. Because the subcohort is representative of the full
cohort at baseline in case-cohort studies, the subcohort in our analyses
included 64 subjects who developed incident type 2 diabetes during follow-up.
A total of 639 of the 703 incident case subjects were identified in the remaining
part of the total cohort and constituted the “external” cases for analyses (14).
A comparison of the randomly selected subcohort, before and after exclu-
sions, and the full EPIC-Potsdam cohort is shown in supplementary Table 1
(available in an online appendix at http://dx.doi.org/10.2337/db08-0538). There
were no significant differences in age, BMI, or sex distribution between full
and subcohort before exclusions, suggesting that the subcohort is represen-
tative for the full cohort. Slight differences were observable between full
cohort and subcohort after exclusions reflecting the selection of an at baseline
diabetes-free population. Subjects in the subcohort were followed for an
average of 7.0 years (range 0.3–10.3 years). Incident case subjects had on
average a diagnosis date 4.0 years after the baseline assessment (range 0.1–9.7
years).

Participants were not required to be fasted at the baseline assessment.
However, about one-third of the participants did not eat for at least 8 h before
the blood drawing. Thus, fasting blood samples were available in 622 subjects
in the subcohort and in 192 incident case subjects.
Baseline anthropometrics and lifestyle characteristics. Waist circumfer-
ence was measured midway between the lower rib margin and the superior
anterior iliac spine to the nearest 0.5 cm with a nonstretching tape applied
horizontally, the proper use of which was controlled with a mirror. Informa-
tion on educational attainment, smoking, occupational activity level, and
leisure time physical activity were assessed with a self-administered question-
naire and a personal interview. We considered sport activities and cycling as
leisure time activities, both calculated as the average time spent per week
during the 12 months before the baseline recruitment.
Measurement of biochemical variables. Plasma levels of glucose, HDL
cholesterol, triglycerides, �-glutamyltransferase, and fetuin-A and erythrocyte
levels of A1C were measured with the automatic ADVIA 1650 analyzer
(Siemens Medical Solutions, Erlangen, Germany). For determination of fe-
tuin-A, an immunoturbidimetric method was used with specific polyclonal
goat anti-human fetuin-A antibodies to human fetuin-A (BioVendor Laboratory
Medicine, Modreci, Czech Republic). This method was evaluated in a side-by-
side comparison with an enzyme-linked immunosorbent assay (intra-assay
coefficient of variation [CV] 3.5% and interassay CV 5.4%; BioVendor Labora-
tory Medicine, Modreci, Czech Republic) (11,12) showing a r2 of 0.88.
Statistical analysis. Associations between plasma fetuin-A levels and se-
lected diabetes risk factors were examined in the subcohort using an
age-adjusted Pearson partial correlation coefficient. Fetuin-A levels were
categorized into quintiles based on subcohort participants. Hazard ratios as a
measure of relative risk (RR) were computed using a weighted Cox propor-

tional hazards model, modified for the case-cohort design according to the
Prentice method (16). Age was the underlying time variable in the counting
processes, with entry defined as the subjects’ age at the time of recruitment
and exit defined as age at the diagnosis of diabetes, or censoring. We
computed age-adjusted RRs for each quintile of fetuin-A compared with the
lowest quintile. The significance of linear trends across quintiles of fetuin-A
was tested by assigning each participant the median value for the quintile and
modeling this value as a continuous variable. Because this analysis indicated
no department from linearity, we considered fetuin-A as continuous variable
estimating the RR associated with an increment of 10 �g/ml or per 1 SD in all
further analyses. We used information on covariates obtained from the
baseline examination in multivariate analyses, including sex, BMI (continu-
ous), waist circumference (continuous), education (in or no training, voca-
tional training, technical school, or technical college or university degree),
occupational activity (light, moderate, or heavy), sports activity (0, 0.1–4, or
�4 h/week), cycling (0, 0.1–2.4, 2.5–4.9, or �5 h/week), smoking (never, past,
or current �20 cigarettes/day or current �20 cigarettes/day), and alcohol
intake (0, 0.1–5, 5.1–10, 10.1–20, 20.1–40, or �40 g/day). We furthermore
examined the impact of potential intermediate biomarkers by adding log-
transformed HDL cholesterol, glucose, triglyceride, A1C, �-glutamyltrans-
ferase, and CRP levels as continuous variables to our models.

For stratified analysis, we also calculated the multivariable-adjusted RR
associated with a difference in fetuin-A by 1 SD according to sex, fasting
status, the presence of abdominal obesity (waist �102 cm in men and �88 cm
in women) and elevated blood glucose (�100 mg/dl). We tested interactions
between fetuin-A levels and subgroups by evaluating the significance of
cross-product terms.

All statistical analyses were performed with SAS release 9.1 (SAS Institute,
Cary, NC). All P values presented are two-tailed; P � 0.05 was considered
statistically significant.

RESULTS

Baseline characteristics and metabolic traits across quin-
tiles of fetuin-A of the random subcohort are presented in
Table 1. Participants with higher fetuin-A concentrations
were younger, were less likely to be men, and drank
smaller amounts of alcohol compared with participants
with lower fetuin-A concentrations. Supplementary Fig. 1
shows the frequency distribution for men and women
across the range of plasma fetuin-A levels (14–442 �g/ml
[mean � SD 129 � 53 �g/ml]).

We next examined the association of fetuin-A levels
with selected risk factors for type 2 diabetes (Table 2).
After adjustment for age, fetuin-A was significantly posi-
tively correlated with fasting glucose, fasting triglycerides,
HDL cholesterol, �-glutamyltransferase, high-sensitivity C-

TABLE 1
Baseline characteristics by quintiles of plasma fetuin-A among men and women, EPIC-Potsdam Study

Quintiles of fetuin-A
Characteristics 1 2 3 4 5 P value

Fetuin-A (�g/ml) 158 201 227 255 304
Age (years) 51.0 50.4 49.9 48.8 47.6 �0.001
BMI (kg/m2) 25.6 26.1 26.1 25.8 26.2 0.194
Waist circumference (cm) 84.7 86.3 86.1 84.9 84.7 0.562
Sport activities (h/week) 1.0 1.0 1.0 1.1 1.0 0.673
Alcohol consumption (g/day) 14.5 15.2 14.6 15.5 11.3 0.033
Men (%) 39.5 40.3 40.7 38.3 30.7 0.013
Random plasma glucose (mg/dl) 85.8 87.6 87.3 87.2 86.9 0.397
Fasting plasma glucose (mg/dl)* 82.3 87.2 85.9 85.8 86.9 0.006
Triglycerides (mg/dl) 93.9 95.4 99.4 94.3 96.9 0.518
Fasting triglycerides (mg/dl)* 76.7 84.4 82.9 83.5 86.0 0.126
HDL cholesterol (mg/dl) 45.3 46.4 46.6 47.5 48.0 �0.001
�-Glutamyltransferase (units/l) 15.1 17.1 17.3 16.5 17.0 0.093
hs-CRP (mg/dl) 0.06 0.06 0.07 0.06 0.08 �0.001
A1C (%) 6.4 6.5 6.5 6.4 6.4 0.419

*Data are percent or means (geometric means for glucose, triglycerides, HDL cholesterol, hs-CRP, A1C, and �-glutamyltransferase). *In the
random subcohort, 246 men and 376 women did not eat for at least 8 h before blood drawing.
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reactive protein (hs-CRP), and A1C; however, correlation
coefficients were overall weak.

Figure 1 presents the age-adjusted RRs of type 2 diabe-
tes for quintiles of fetuin-A. Participants in the highest
quintile of fetuin-A levels had a significantly increased risk
of diabetes compared with the lowest quintile (RR 1.75
[95% CI 1.32–2.31]; P for trend �0.0001). Because there
was no indication of nonlinearity and fetuin-A levels were
approximately normally distributed, we considered fe-
tuin-A as continuous variable on its natural scale in further
analyses. Table 3 shows the estimated RRs of type 2 per 10
�g/ml fetuin-A levels at baseline for all subjects and
according to fasting status. After adjustment for age,
fetuin-A levels were significantly associated with in-
creased risk of diabetes (1.04 [1.03–1.06]) among all par-
ticipants. This association was similar after adjustment for
sex, BMI, and waist circumference (1.04 [1.02–1.06]) and
also after further adjustment for lifestyle risk factors (1.03
[1.01–1.06]) and remained significant. The association be-
came slightly stronger after adjustment for glucose, tri-
glycerides, HDL cholesterol, A1C, �-glutamyltransferase,
and hs-CRP (1.05 [1.02–1.07]). The association between
fetuin-A and type 2 diabetes risk appeared to be somewhat
stronger among fasting subjects (RR full adjusted model
1.09 [1.04–1.13]) compared with nonfasting subjects (1.04
[1.01–1.07]).

Figure 2 shows the multivariable-adjusted RR of type 2

diabetes for 1 SD of fetuin-A per 1 SD with different
adjustment for biochemical variables. The RR adjusted for
age, sex, and anthropometric and lifestyle characteristics
was 1.19 (95% CI 1.06–1.33). Adjustment for HDL choles-
terol, triglycerides, glucose, A1C, �-glutamyltransferase, or
hs-CRP or mutual adjustment for all these biomarkers did
not appreciably affect this result (RR for full adjusted
model 1.28 [95% CI 1.13–1.46]). Similarly, adjustment for
other biomarkers did not alter the observed association
among fasted or nonfasted subjects (data not shown).

We next evaluated the associations between fetuin-A
and the risk of type 2 diabetes in several subgroups (Fig.
3). The associations appeared to be stronger in men
compared with women and among fasted compared with
nonfasted participants. However, the tests for interactions
were not significant. Similar associations were observable
across strata of abdominal obesity. In contrast, glucose
levels modified the association between fetuin-A levels
and diabetes risk with a strong association observable
among participants with elevated glucose (RR for 1 SD
1.62 [95% CI 1.31–2.00]), whereas there was no significant
association among participants with normal glucose val-
ues (P value for interaction 0.023).

We repeated our analyses excluding all incident case
subjects who were identified within the first 2 years of
follow-up (n � 163). Fetuin-A remained positively associ-
ated with diabetes risk (RR for 1 SD 1.17 [95% CI 1.03–
1.34]). In a further sensitivity analysis, we evaluated
whether storage time had a potentially impact on our
observation. Blood samples were stored on average 11.2
years (range 9.2–13.3 years) before fetuin-A measurement
in December 2007. Fetuin-A was similarly positively asso-
ciated among participants with blood storage time �11
years (RR for 1 SD 1.34 [1.08–1.65]) and those with storage
time greater or equal 11 years (1.32 [1.12–1.54]).

DISCUSSION

Animal and human studies suggest that the protein fe-
tuin-A induces insulin resistance (7–12), thus supporting
the hypothesis that fetuin-A may also play a role in the
pathophysiology of type 2 diabetes. To our knowledge, our
study is the first to show that high plasma fetuin-A levels at
baseline predicted the incidence of type 2 diabetes. This
relationship remained statistically significant after adjust-
ment for established risk factors of type 2 diabetes, such
as sex, age, BMI, waist circumference, glucose, triglycer-
ide, HDL cholesterol, A1C, �-glutamyltransferase, and
hs-CRP. Our findings, therefore, strongly indicate that
fetuin-A independently predicts the risk of type 2 diabetes.

For a long time after its discovery, fetuin-A was consid-
ered to primarily play a role in the protection from
vascular calcification by keeping calcium and phosphorus
solubilized in serum (17). Besides these specific effects on
the hydroxyapatite deposition in vessel walls, a new
mechanism of fetuin-A action was detected. In a large
study in humans, high serum fetuin-A levels were found to
be positively associated with the metabolic syndrome and
subclinical inflammation, suggesting that fetuin-A may be
causally involved in the pathophysiology of these condi-
tions (18). In agreement with that study, we found that
fetuin-A levels correlated positively with hs-CRP levels,
and extended the information on fetuin-A action by show-
ing that fetuin-A promotes cytokine expression in mono-
cytes and adipocytes and represses the production of the
insulin-sensitizing adipokine adiponectin (19). Further

TABLE 2
Age-adjusted Pearson partial correlation coefficients between
plasma fetuin-A levels and selected risk factors, EPIC-Potsdam
Study, 819 men and 1,345 women

Risk factors r P value

Waist circumference 0.025 0.247
Random plasma glucose 0.039 0.068
Fasting plasma glucose* 0.098 0.015
Triglycerides 0.041 0.058
Fasting triglycerides* 0.093 0.021
HDL cholesterol 0.086 �0.001
�-Glutamyltransferase 0.063 0.004
hs-CRP 0.122 �0.001
A1C 0.049 0.024

*In the random subcohort, 246 men and 376 women did not eat for at
least 8 h before blood drawing.
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FIG. 1. Age-adjusted RR of type 2 diabetes by quintiles of plasma
fetuin-A (�g/ml) among men and women in the EPIC-Potsdam Study. P for
trend <0.001. Medians (ranges) for quintiles are as follows: quintile 1,
162 �g/ml (14–184); quintile 2, 202 �g/ml (185–214); quintile 3, 227 �g/ml
(215–240); quintile 4, 255 �g/ml (241–271); quintile 5, 295 �g/ml (272–
442).
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support for a potential role of fetuin-A in the regulation of
glucose and lipid metabolism is given by the fact that the
gene encoding fetuin-A is located on chromosome 3q27,
the chromosomal region that was previously mapped as a
type 2 diabetes and metabolic syndrome susceptibility
locus (20). The aforementioned findings and the animal
studies showing that fetuin-A induces insulin resistance
(7–10) resulted in the view that fetuin-A is an interesting
candidate involved in the pathophysiology of type 2 dia-
betes. Genetic analyses revealing that single nucleotide

polymorphisms in the fetuin-A gene were associated with
type 2 diabetes in cross-sectional studies (21) further
corroborated this hypothesis. However, the role of fe-
tuin-A in the natural history of type 2 diabetes still
remained obscure. Fetuin-A, besides the placenta, is ex-

0.0 0.5 1.0 1.5 2.0

multivariate

+ HDL

+ TG

+ glucose

+ HbA1c

+ GGT

+ CRP

+ all biomarkers

Relative Risk
FIG. 2. RR of type 2 diabetes per 1 SD of plasma fetuin-A with varying
adjustment for metabolic risk markers among men and women in the
EPIC-Potsdam Study. RRs were adjusted for age, sex, BMI, waist
circumference, education (in or no training, vocational training, tech-
nical school, or technical college or university degree), occupational
activity (light, moderate, or heavy), sport activity (0, 0.1–4, or >4
h/week), cycling (0, 0.1–2.4, 2.5–4.9, or >5 h/week), smoking (never,
past, or current <20 cigarettes/day or current >20 cigarettes/day), and
alcohol intake (0, 0.1–5, 5.1–10, 10.1–20, 20.1–40, or >40 g/day).

0.0 0.5 1.0 1.5 2.0
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Women

Non-fasted
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Nonobese

Obese

Normal glucose

High glucose

Relative Risk

p = 0.302

p = 0.342

p = 0.023

p = 0.382

FIG. 3. RR of type 2 diabetes per 1 SD of plasma fetuin-A for subgroups
of sex, fasting status, abdominal obesity, and glucose levels in the
EPIC-Potsdam Study. RRs were adjusted for age, sex BMI, waist
circumference, education (in or no training, vocational training, tech-
nical school, or technical college or university degree), occupational
activity (light, moderate, or heavy), sport activity (0, 0.1–4, or >4
h/week), cycling (0, 0.1–2.4, 2.5–4.9, or >5 h/week), smoking (never,
past, or current <20 cigarettes/day or current >20 cigarettes/day), and
alcohol intake (0, 0.1–5, 5.1–10, 10.1–20, 20.1–40, or >40 g/day), HDL
cholesterol, triglycerides, glucose, A1C, �-glutamyltransferase, and
hs-CRP (all log transformed). Abdominal obesity was defined as waist
>102 cm among men or >88 cm among women. High glucose was
defined as >100 mg/dl.

TABLE 3
RR of type 2 diabetes for plasma fetuin-A (per 10 �g/ml) among men and women in the EPIC-Potsdam Study

Model All subjects Fasting subjects Nonfasting subjects

Age adjusted 1.04 (1.03–1.06) 1.06 (1.03–1.10) 1.03 (1.01–1.05)
Adjusted for age, sex, BMI, and waist circumference 1.04 (1.02–1.06) 1.07 (1.03–1.11) 1.03 (1.00–1.05)
Multivariate adjusted* 1.03 (1.01–1.06) 1.08 (1.04–1.12) 1.02 (1.00–1.05)
Further adjustment for HDL cholesterol,

triglycerides, glucose, A1C, �-glutamyltransferase,
and hs-CRP† 1.05 (1.02–1.07) 1.09 (1.04–1.13) 1.04 (1.01–1.07)

Data are RR (95% CI). *Adjusted for age, sex, BMI, waist circumference, education (in or no training, vocational training, technical school,
or technical college or university degree), occupational activity (light, moderate, or heavy), sport activity (0, 0.1–4, or �4.0 h/week), cycling
(0, 0.1–2.4, 2.5–4.9, or �5 h/week), smoking (never, past, or current �20 cigarettes/day or current �20 cigarettes/day), and alcohol intake
(0, 0.1–5, 5.1–10, 10.1–20, 20.1–40, or �40 g/day). †HDL cholesterol, triglycerides, glucose, A1C, �-glutamyltransferase, and hs-CRP were log
transformed.
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clusively secreted from the liver (22). Expression of fe-
tuin-A and plasma levels of the protein were found to be
increased when there is fat accumulation in the liver
(11,23) and circulating fetuin-A is increased in the meta-
bolic syndrome (18), the condition that strongly associates
with fatty liver (24). Based on these data and on the
observation that fatty liver strongly predicts type 2 diabe-
tes (25), the present findings suggest that fetuin-A may be
a mediator of fatty liver–induced type 2 diabetes. In
agreement with the latter hypothesis, we found that
plasma fetuin-A levels in our study also correlated posi-
tively with the plasma �-glutamyltransferase level, which
is considered a weak surrogate marker of fatty liver (26).
However, fetuin-A remained significantly associated with
diabetes risk even after adjustment for �-glutamyltrans-
ferase. Still, we were not able to adjust for more precise
measures of liver fat, e.g., by localized proton magnetic
resonance spectroscopy (11,24), and thus were not able to
clarify the extent to which the risk associated with fe-
tuin-A is explainable by liver fat content. If our hypothesis
can be further substantiated by future studies, then fe-
tuin-A, similar to the adipokines secreted from adipose
tissue (27), may represent the first identified factor among
other, yet-unknown secreted proteins from the liver (hepa-
tokines), which regulate insulin signaling in insulin-sensi-
tive tissues. Finally, whether fetuin-A also affects insulin
secretory function of the �-cells and thereby influences the
incidence of type 2 diabetes remains to be investigated.

Interestingly, the association between circulating fe-
tuin-A and type 2 diabetes was modified by the existence
of elevated glucose levels. A positive association was
observed among participants with elevated plasma glu-
cose levels within the nondiabetic range, whereas fetuin-A
was not associated with diabetes risk among participants
with normal glucose levels. Fasting hyperglycemia largely
results from impaired function of the �-cells to secrete
insulin, the major factor involved in the pathogenesis of
type 2 diabetes (28). Our findings therefore support that
fetuin-A itself or fetuin-A–induced insulin resistance may
lead to a deterioration of insulin secretion and ultimately
to a decompensation of glucose homeostasis, particularly
in subjects who already display impaired �-cell function
(Fig. 4). Thus, measurement of plasma fetuin-A may be
particularly important for the evaluation of the individual
risk of type 2 diabetes in these individuals who already
have a high risk for the disease. Conversely, adequate
�-cell function may protect individuals who are character-
ized by normal fasting glycemia from the detrimental
effects of higher fetuin-A levels.

Some possible limitations of our findings must be con-
sidered. All potential cases in our study were verified by a
physician. Although we considered only clinically appar-
ent type 2 diabetes and did not screen our study popula-
tion during follow-up, we excluded participants with
plasma glucose values within the diabetic range at base-
line, and fetuin-A remained positively associated with
diabetes risk after exclusion of case subjects diagnosed
within the first 2 years of follow-up. Thus, it is unlikely that
prevalent but undiagnosed cases of diabetes remained in
our analyses. The potential of residual confounding ap-
plies to our study as it does to observational studies in
general. We adjusted for a large variety of known risk
factors, among them age, sex, anthropometry, alcohol
consumption, activity patterns, and metabolic risk mark-
ers. Although fetuin-A remained significantly associated
with diabetes risk, we cannot rule out that other unmea-

sured factors or that imprecision in the measurement of
covariates explain this observation. Also, we only had a
single blood drawing, which might have introduced ran-
dom measurement errors in determining fetuin-A and
other biochemical variables. The lack of repeated mea-
surements may have led to an underestimation of the
observed associations. Most participants in our study were
nonfasted at blood drawing. Although statistically not
significantly different, the association between fetuin-A
and diabetes risk appeared to be stronger among fasted
individuals compared with nonfasted. Fasted subjects
were on average 2 years older than nonfasted participants
and slightly more likely to be men (40 vs. 37%). Given the
higher incidence rates observed in our study for men
compared with women and with increasing age (29), a
higher baseline risk among fasted participants might there-
fore be an explanation for the difference. Finally, because
of the observational design of our study, we cannot
unequivocally prove whether the relationship between
circulating fetuin-A levels and type 2 diabetes risk is
causal.

In conclusion, our finding that high plasma fetuin-A
levels predict the incidence of type 2 diabetes indepen-
dently of other established risk factors supports the hy-
pothesis that fetuin-A may play a role in the development
of type 2 diabetes.
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