To the editor:

Marburg I polymorphism of factor VII–activating protease and risk of venous thromboembolism

The factor VII–activating protease (FSAP), a newly discovered serine-protease present in human plasma, has 2 main functions in hemostasis: it is a potent activator of prourokinase and accelerates coagulation by activating factor VII, independently of tissue factor.² The FSAP Marburg I polymorphism (1601G>A) was recently evaluated as a candidate risk factor for venous thromboembolism (VTE), since it impairs the capacity of FSAP to activate prourokinase while preserving its capacity to activate factor VII.³

Hoppe et al⁴ first reported the Marburg I polymorphism to be associated with an increased risk of VTE,² but these data were not confirmed by Van Minkellen et al.³ Since such different findings were possibly related to the different selection of the control group (formed by blood donors in the former study and by unselected healthy subjects in the latter), Hoppe et al⁵ reviewed their data using a different control group of non-blood donors and confirmed the association between the Marburg I polymorphism and VTE only for patients with idiopathic events (ie, those occurring in the absence of triggering factors [OR = 2.7; 95% CI, 1.2-6.1]).⁴

To further investigate the role of the Marburg I polymorphism as a risk factor for VTE, we carried out a large case control study of 418 patients (161 men and 257 women) who had a first, objectively confirmed VTE and were referred to our Thrombosis Center for a thrombophilia screening, and 422 healthy controls (173 men and 249 women) who were partners or friends of the whole population of thrombosis patients seen at the center. The Marburg I polymorphism was evaluated by amplification refractory mutation system (primers and conditions available on request). The median age at VTE for patients and at blood sampling for controls was 39 years (range, 14-76 years) and 42 years (range, 16-84 years), respectively. We confirmed a statistically significant association between VTE and such established risk factors as factor V Leiden, prothrombin 20210G>A, antithrombin, protein C and protein S deficiencies, hyperhomocysteinemia, and oral contraceptive use (data not shown).

Table 1 shows the prevalence of the Marburg I polymorphism, which was very similar in patients and controls, either considering all VTEs (5.3% vs 5.2%; OR = 1.0; 95% CI, 0.51-1.9) or only the 190 idiopathic events (4.4% vs 5.2%; OR = 1.1; 95% CI, 0.5-2.7). All carriers of FSAP Marburg I were heterozygous for the variant.

In conclusion, the present study ruled out a strong association between the FSAP 1601G>A polymorphism (Marburg I) and unselected or idiopathic VTE. Whether the Marburg I polymorphism determines a weak effect on thrombotic risk could be observed only in very large study populations, and remains to be determined.

Franca Franchi, Ida Martinelli, Eugenia Biguzzi, Paolo Bucciarelli, and Pier Mannuccio Mannucci

References

Table 1. FSAP Marburg I polymorphism in the study population

<table>
<thead>
<tr>
<th></th>
<th>Patients, no. (%)</th>
<th>Controls, no. (%)</th>
<th>Crude odds ratio (95% CI)</th>
<th>Adjusted odds ratio* (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All VTE</td>
<td>21 (5.3)</td>
<td>21 (5.2)</td>
<td>1.0 (0.5-1.9)</td>
<td>1.0 (0.51-1.9)</td>
</tr>
<tr>
<td>Idiopathic VTE</td>
<td>8 (4.4)</td>
<td>21 (5.2)</td>
<td>0.8 (0.4-1.9)</td>
<td>1.1 (0.5-2.7)</td>
</tr>
</tbody>
</table>

*Adjusted for age, sex, and the presence of thrombophilia.

To the editor:

Experience with bortezomib for the treatment of patients with relapsed classical Hodgkin lymphoma

The proteasome inhibitor bortezomib has been successfully used to treat patients with multiple myeloma and non-Hodgkin lymphoma.¹³ We have recently reported that bortezomib can induce cell cycle arrest and apoptosis in a variety of Hodgkin lymphoma (HL)-derived cell lines in vitro.² Furthermore, bortezomib potentiated the activity of chemotherapy and agonistic antibodies to the TRAIL death receptors.³ Based on these preclinical data, we initiated a pilot study of bortezomib in patients with relapsed and refractory classical HL.

Patients were enrolled in the study if they had relapsed classical HL with a bidimensionally measurable disease, had received a minimum of 2 prior treatment regimens (including stem cell transplantation), and had adequate pretreatment bone marrow, hepatic, and renal functions. Patients were excluded if they had a history of human immunodeficiency virus infection or central nervous system involvement with HL. Patients were treated with 1.3 mg/m² bortezomib intravenously on days 1, 4, 8, and 11 of
To the editor:

Long-term engraftment and clonal dominance of donor-derived del(20q) hematopoietic cells after allogeneic stem cell transplantation

In 1997, a 50-year-old woman who was retrospectively diagnosed with early asymptomatic myelodysplastic syndrome (MDS) served as a hematopoietic cell donor for her HLA-identical sister who had chemotherapy-refractory angioimmunoblastic T-cell lymphoma.1 In 1997, a 50-year-old woman who was retrospectively diagnosed with early asymptomatic myelodysplastic syndrome (MDS) served as a hematopoietic cell donor for her HLA-identical sister who had chemotherapy-refractory angioimmunoblastic T-cell lymphoma.1

Our data demonstrate that in these heavily pretreated patients with treatment refractory relapsed classical HL, bortezomib has minimal single-agent activity. Future studies should evaluate bortezomib in less heavily pretreated patients, preferably whose disease responded to their last treatment modality. Furthermore, bortezomib-based combination therapy should also be investigated in patients with relapsed classical HL to determine whether bortezomib may potentiate the activity of chemotherapy in vivo.

Anas Younes, Barbara Pro, and Luis Fayad

Correspondence: Anas Younes, Department of Lymphoma/Myeloma, M. D. Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030; e-mail: ayounes@mdanderson.org

References

