Vitamin D-Directed Rheostatic Regulation of Monocyte Antibacterial Responses

John S. Adams; et. al

https://doi.org/10.4049/jimmunol.0803736

Related Content

IFN-γ- and TNF-Independent Vitamin D-Inducible Human Suppression of Mycobacteria: The Role of Cathelicidin LL-37
J Immunol (June, 2007)

Vitamin D and the Regulation of Placental Inflammation
J Immunol (May, 2011)

Vitamin D Regulates MerTK-Dependent Phagocytosis in Human Myeloid Cells
J Immunol (July, 2020)
The active, hormonal form of vitamin D, 1,25-dihydroxyvitamin D (1,25(OH)2D) exerts biological effects that extend far beyond its established role in calcium and bone homeostasis. In particular, recent studies have shown that 1,25(OH)2D is a potent modulator of both innate and adaptive immunity (1–3). A crucial facet of these reports has been the recognition that immune responses to vitamin D are more likely to be due to localized synthesis of 1,25(OH)2D rather than systemic production of the hormone (4). Experiments using monocytes (5), dendritic cells (6–8), and lymphocytes (8, 9) have demonstrated expression of both the intracellular receptor for 1,25(OH)2D (vitamin D receptor, VDR), 3 and the enzyme that catalyzes conversion of prohormone 25-hydroxyvitamin D (50). Of these, 38% were vitamin D-insufficient (<75 nM 25OHD) and received supplementation with vitamin D (50,000 IU vitamin D2 twice weekly for 5 wk). Baseline 25OHD status or vitamin D supplementation had no effect on circulating levels of hCAP. Therefore, ex vivo changes in hCAP for each subject were assessed using peripheral blood monocytes cultured with 10% serum from vitamin D (25OHD) “insufficient” conditions the TLR2/1 ligand 19 kDa lipopeptide or the TLR4 ligand LPS, monocytes showed increased expression of the vitamin D-activating enzyme CYP27b1 (5- and 5.5-fold, respectively, both p < 0.01) but decreased expression of hCAP mRNA (10-fold and 30-fold, both p < 0.001). Following treatment with 19 kDa, expression of hCAP: 1) correlated with 25OHD levels in serum culture supplements (R = 0.649, p < 0.001); 2) was significantly enhanced by exogenous 25OHD (5 nM); and 3) was significantly enhanced with serum from vivo vitamin D-supplemented patients. These data suggest that a key role of vitamin D in innate immunity is to maintain localized production of antibacterial hCAP following TLR activation of monocytes. The Journal of Immunology, 2009, 182: 4289–4295.
Materials and Methods

Human subjects

A cohort of fifty human subjects (40 female, 10 male, mean age 63.3 ± 14.9) was recruited from patients visiting the Cedars-Sinai Medical Center Bone Clinic for treatment of low bone mineral density, but who were otherwise healthy. The clinical parameters for inclusion in the study were established as part of an Institutional Review Board-approved protocol (CSMC1D, 7995) to: 1) screen serum and urine for diagnosis of vitamin D insufficiency (and other causes of secondary osteoporosis) by measuring serum calcium, phosphate, magnesium, creatinine, parathyroid hormone, 25OHD, 1,25(OH)2D, and urine calcium:creatinine excretion ratio; 2) collect serum and PBMC from patients; 3) collect serum and PBMCs from those patients with low vitamin D status after a course of vitamin D treatment to restore 25OHD levels to normal. Patients classified as vitamin D insufficient (serum 25OHD <75 nM (30 ng/ml) following the initial visit to the clinic were placed on a course of oral vitamin D therapy to restore vitamin D sufficiency (50,000 IU vitamin D3 twice per week for 5 wk). All 50 patients recruited to the trial provided serum for biochemical analyses and 28 provided PBMCs for ex vivo analyses.

Culture of monocyte cell lines

Human THP-1 and mouse J774A macrophage cell lines were cultured in RPMI 1640 growth medium supplemented with 10% FCS at 37°C and 5% carbon dioxide. In vitro treatments included: the TLR 2/1 ligand 19 kDa lipopeptide (1 ng/ml), the TLR4 ligand LPS (100 ng/ml), and 25OHD (5–100 nM).

Patient blood collection and isolation of serum and PBMCs

All patients entering the trial donated 10 ml of blood for separation of serum. Serum samples were: 1) stored at −80°C for subsequent use in ex vivo culture experiments, 2) used for analysis of serum vitamin D metabolites, and 3) used for ELISA analysis of serum hCAP protein (as described in Ref. 12).

Patients also donated 20 ml of heparinized blood for isolation of PBMCs. In brief, heparinized whole blood was diluted 1/2 in PBS and layered on 5 ml of Lymphoprep (Greiner Bio-One) and centrifuged at 500 × g for 30 min. PBMCs were isolated from the interface and washed twice with PBS to remove residual Lymphoprep. The resulting cell pellet was then resuspended in PBS and the sample divided into two. The first aliquot was lysed immediately with RNAzol to provide PBMC total RNA for subsequent gene analysis. The second aliquot was recentrifuged, resuspended in serum-free RPMI 1640 and aliquots of this suspension plated in 24-well plastic cell culture plates for 2 h. Nonadherent cells were then removed and lysed in RNAzol to provide total RNA from a lymphocyte-enriched population of cells. The remaining adherent monocytes were separated into two populations. The first was lysed with RNAzol to provide monocyte total RNA for subsequent gene analysis. The second population of monocytes was retained for ex vivo culture experiments (as described in the following section).

Ex vivo analysis of patient monocytes using autologous serum cultures

Monocytes isolated from patient PBMCs were cultured for 24 h in RPMI 1640 medium supplemented with 10% autologous serum. Cells cultured under these conditions underwent four main treatments: 1) monocytes plus autologous serum (control); 2) monocytes plus autologous serum plus TLR2 ligand (19 kDa bacterial lipopeptide, 1 μg/ml); 3) monocytes plus autologous serum plus ex vivo added 25OHD (5 or 100 nM); or 4) monocytes plus autologous serum plus TLR2 ligand (19 kDa) plus ex vivo added 25OHD (5 or 100 nM). Following treatment of monocytes for 24 h, culture supernatants were removed and stored at −80°C for subsequent analysis of 1,25(OH)2D production using an IRA kit (Diasorin) and previously described methods (13). The remaining adherent cells were then lysed with RNAzol to generate total RNA for subsequent gene analysis (see below).

Extraction of RNA and reverse transcription

RNA was extracted from mouse tissues using the RNeasy Total RNA extraction kit as detailed by the manufacturer (Qiagen). RNA was eluted in RNA-free elution solution and aliquots (1.5 μg) were reverse-transcribed using PowerScript MMLV reverse transcriptase as described by the manufacturer (ABI).

Quantitative real time RT-PCR amplification of cDNAs

Expression of mRNAs for VDR, CYP27b1, 24-hydroxylase (CYP24), hCAP, β-defensin-4, and other specified genes was quantified using an Applied Biosystems (ABI) 7700 sequence detection system (ABI) as described previously (14). Approximately 50 ng of cDNA was used per reaction. All reactions were multiplexed with the housekeeping 18S rRNA gene (Assays-on-Demand (ABI) primer and probe mix Hs99999901_s1), enabling data to be expressed in relation to an internal reference to allow for differences in sampling. Data were obtained as Ct values (the cycle number at which logarithmic PCR plots cross a calculated threshold line), and used to determine ΔCt values (Ct of target gene−Ct of housekeeping 18S rRNA gene). PCR amplification of target gene cDNA was conducted using the following Taqman human gene expression assays: CYP27b1, forward primer 5’-TTGCGAACCGCGACTGCCAT-3’, reverse primer 5’-TTGTGTTAGGAGTCTGGGCCAAA-3’, TaqMan probe 5’-TTGAGATCTGCAGCGAATGATCTG-3’. All reactions were multiplexed with the housekeeping 18S rRNA gene (Assays-on-Demand (ABI) primer and probe mix Hs99999901_s1), and the housekeeping gene (Assays-on-Demand (ABI) primer and probe mix Hs99999901_s1), and the housekeeping gene (Assays-on-Demand (ABI) primer and probe mix Hs99999901_s1), and the housekeeping gene (Assays-on-Demand (ABI) primer and probe mix Hs99999901_s1), and the housekeeping gene (Assays-on-Demand (ABI) primer and probe mix Hs99999901_s1), and the housekeeping gene (Assays-on-Demand (ABI) primer and probe mix Hs99999901_s1). All cDNAs were amplified under the following conditions: 50°C for 2 min; 95°C for 10 min followed by 40 cycles of 95°C for 15 s and 60°C for 1 min. All reactions were performed in triplicate and initially expressed as mean ± SD ΔCt values, which were used in statistical comparisons. Visual representation of data was conducted by converting ΔCt values to fold-change data relative to ΔCt values for control (vehicle-treated) cells using the equation 2−ΔΔCt.

Statistical analyses

Data were expressed as mean ± SD unless otherwise stated. Statistical evaluation of correlations for circulating vitamin D metabolites was by linear regression. Statistical analysis of ex vivo treatment studies was conducted by one way ANOVA with the Holm-Sidak method as a post hoc multiple comparison procedure applied to raw ΔCt values from RT-PCR assays. Statistical analysis of pre- and postvitamin D supplementation data was conducted using a Student’s t test. All statistical values were defined using Sigmastat 9.0 software (Systat).
Results

Lack of correlation between serum vitamin D metabolites and circulating levels of hCAP

Previous studies ex vivo have shown that serum levels of 25OHD are a key determinant of antimicrobial hCAP expression by monocytes following immune challenge by pathogens such as M. tb (5). In a similar fashion, studies in vivo have shown that supplementation with vitamin D suppresses the growth of M. tb in samples of whole blood from healthy adults (15), and reduces the time for sputum smear conversion from acid fast bacteria positive to acid fast bacteria-negative status in patients with tuberculosis (16). We have shown previously that monocyte responses to vitamin D involve localized autocrine induction of hCAP (5). What is less clear is whether this antimicrobial activity also extends to systemic hCAP. To investigate further the extent to which innate immunity is influenced by vitamin D status in the host, and to ascertain whether antibacterial effects are due to a predictable change in circulating concentrations of hCAP, we assessed the relationship between serum concentrations of 25OHD, 1,25(OH)₂D and hCAP in a cohort of human subjects.

Data in Fig. 1 show that although serum hCAP levels varied considerably, there was no significant correlation with serum 25OHD or 1,25(OH)₂D concentrations. Likewise, no significant correlation was observed between serum vitamin D metabolites and mRNA levels for hCAP in PBMCs isolated from the same blood sample (Fig. 2, A and B). A similar lack of correlation between serum vitamin D metabolites and hCAP mRNA was also observed for macrophages and lymphocytes isolated from the PBMCs (data not shown). It was interesting to note that circulating concentrations of protein for hCAP did not correlate with levels of hCAP mRNA isolated from PBMCs. This is consistent with reports indicating that plasma hCAP levels are primarily generated by the bone marrow rather than cells in the circulation (12).

Expression of CYP27b1 and VDR in ex vivo monocyte cultures

The absence of any significant relationship between serum vitamin D metabolites and circulating levels of hCAP supported our long-held hypothesis that immune responses to vitamin D occur primarily at a localized, cell-specific level. As such, additional experiments were conducted using ex vivo culture of monocytes isolated from patient PBMCs and cultured for 24 h in medium supplemented with 10% autologous serum (n = 28). Under these conditions monocytes treated with the TLR2 ligand 19 kDa, showed...
FIGURE 4. Regulation of monocyte cathelicidin (hCAP) by TLR ligands and 25OHD. Changes in hCAP expression following treatment with ligands to: A, TLR2/1 (19 kDa lipopeptide, 19 kDa, 1 ng/ml) or B, TLR4 (LPS, 100 ng/ml) in monocytes cultured in medium supplemented with autologous serum (taken from patients before any in vivo vitamin D supplementation) with or without added 25OHD (5 or 100 nM). Data shown are the mean fold-change in hCAP mRNA expression relative to vehicle-treated control monocytes, p < 0.001. *, Mean ΔCT values statistically different to ΔCT value for vehicle-treated control monocytes, p < 0.05. #, Mean ΔCT values statistically different to ΔCT value for TLR-treated control monocytes, p < 0.05. ###, Mean ΔCT values statistically different to ΔCT value for TLR-treated control macrophages, p < 0.01. ###, Mean ΔCT values statistically different to ΔCT value for TLR-treated control monocytes, p < 0.001. Numbers shown in bars indicate mean fold-change values compared with vehicle-treated controls (C).

significantly enhanced expression of CYP27b1 and VDR (Fig. 3, A and B). Similar induction of CYP27b1 was also observed following treatment with the TLR4 ligand LPS, indicating that at least one other TLR pathway is capable of activating vitamin D metabolism and function (Fig. 3A). Expression of CYP27b1 and VDR was unaffected in monocytes cultured with supplementary 25OHD (Fig. 3, A and B). Analysis of 1,25(OH)2D levels in conditioned medium from cells treated with or without supplementary 25OHD showed that even in the absence of TLR induction, there was significant conversion of the prohormone to 1,25(OH)2D when 25OHD at a concentration of 100 nM was added to the macrophages (Fig. 3C). These results indicate that there is a basal level

of monocyte CYP27b1 activity that is dependent on the availability of substrate 25OHD alone, and which does not require TLR-mediated up-regulation of the enzyme.

Vitamin D and ex vivo regulation of hCAP expression
Analysis of hCAP expression in the ex vivo monocyte cultures highlighted two key responses (Fig. 4). Firstly, treatment with 25OHD enhanced expression of hCAP at a concentration of 100 nM 25OHD stimulated hCAP expression in both the absence (12-fold, p < 0.001 compared with vehicle) or presence of 19 kDa (8.4-fold, p < 0.001 compared with vehicle) (Fig. 4A). Similar observations were also made following combined treatment of monocytes with LPS and 100 nM 25OHD (Fig. 4B). In the absence of any TLR activation of CYP27b1, treatment with 5 nM 25OHD had no effect on monocyte hCAP expression. However, when used in combination with 19 kDa, 5 nM 25OHD significantly enhanced hCAP expression relative to cells treated with 19 kDa only (p < 0.05) (Fig. 4A). Similar induction of the VDR-target gene PPAR2 was also observed in monocytes treated with 19 kDa and 5 nM 25OHD (see supplementary Fig. 1), suggesting an autocrine mechanism of action via localized induction of CYP27b1 expression and concomitant endogenous synthesis of 1,25(OH)2D. This was further endorsed by studies using intracazolaz (5 μM) to inhibit PPAR2 activity. In heterologous culture experiments using n = 3 of the serum samples used for autologous culture, but with a single population of donor monocytes, cells exposed to intracazolaz showed lower levels of hCAP expression when treated in combination with 19 kDa (4.3-fold, p < 0.05 compared with 19 kDa only) or 19 kDa plus 5 nM 25OHD (2.3-fold, p < 0.05 compared with 19 kDa plus 5 nM 25OHD only).

In previous studies, we observed that monocytes cultured in 10% heterologous serum without added 25OHD exhibit decreased levels of mRNA for hCAP when treated with 19 kDa (5). One possible explanation for this is that the use of 10% serum for monocyte culture effectively represents a 10-fold dilution of 25D levels. It was therefore interesting to note that 19 kDa or LPS induced a similar suppression of hCAP mRNA in monocytes cultured with 10% heterologous serum without added 25OHD (see supplementary Fig. 1), suggesting an autocrine mechanism of action via localized induction of CYP27b1 expression and concomitant endogenous synthesis of 1,25(OH)2D. This was further endorsed by studies using intracazolaz (5 μM) to inhibit PPAR2 activity. In heterologous culture experiments using n = 3 of the serum samples used for autologous culture, but with a single population of donor monocytes, cells exposed to intracazolaz showed lower levels of hCAP expression when treated in combination with 19 kDa (4.3-fold, p < 0.05 compared with 19 kDa only) or 19 kDa plus 5 nM 25OHD (2.3-fold, p < 0.05 compared with 19 kDa plus 5 nM 25OHD only).

4 The online version of this article contains supplementary material.
Vitamin D deficiency is associated with decreased expression of monocyte cathelicidin (hCAP) following TLR2/1 challenge. A. Expression of hCAP in ex vivo cultures of human monocytes following 24 h treatment with the TLR2/1 ligand 19 kDa lipopeptide (1 ng/ml) under autologous serum culture conditions. Data are shown as the mean fold-change in hCAP expression (±SD) of TLR-activated monocytes compared with vehicle-treated cells for subjects categorized as vitamin D-sufficient (serum 25OHD greater than 75 nM, n = 18) or vitamin D-deficient (serum 25OHD less than 75 nM, n = 10). B. Effect of supplementation with vitamin D on serum 25OHD and 1,25(OH)\(_2\)D levels in the patients initially categorized as vitamin D-deficient (serum 25OHD less than 75 nM, n = 10). C. Effect of vitamin D supplementation of patients (Post-D) initially categorized as vitamin D-deficient (Pre-D) on expression of hCAP in ex vivo cultures of human monocytes treated for 24 h with the TLR2/1 ligand 19 kDa lipopeptide under autologous serum culture conditions. Data are shown as the mean fold-change in hCAP expression (±SD) of TLR-activated monocytes compared with vehicle-treated cells for vitamin D-insufficient subjects before (Pre-D) and after (Post-D) supplementation with vitamin D. *** Statistically different from values for the <75 nM 25OHD group; p < 0.001. *, Statistically different from values for the <75 nM 25OHD group; p < 0.05. ##, Statistically different from values for the pretreatment <75 nM 25OHD group; p < 0.01.

In view of the fact that the suppression of macrophage hCAP expression by TLR ligands was rescued in vitro by the addition of a relatively small amount of supplementary 25OHD (5 nM) (see Fig. 4A), we reasoned that naturally occurring variations in the serum levels of this vitamin D metabolite may be a key determinant of macrophage production of hCAP following pathogen-sensing by TLRs. To test this postulate, we determined the magnitude of TRL2/1-regulated hCAP expression for each patient following treatment with 19 kDa (Fig. 6). The resulting change in hCAP expression was then compared with the levels of 25OHD and 1,25(OH)\(_2\)D in each 10% serum sample used for autologous culture of macrophages. Data in Fig. 6A revealed a statistically significant correlation between serum 25OHD levels in 10% donor serum and hCAP mRNA in ex vivo cultures of donor monocytes following activation of TLR2. Although a similar trend was observed for serum 1,25(OH)\(_2\)D, this was not statistically significant (Fig. 6B).

In vivo supplementation with vitamin D enhances monocyte production of hCAP ex vivo

As indicated in Fig. 6A, ~40% of the patients recruited to the study presented with serum levels of 25OHD that were classified as vitamin D insufficient (<75 nM or 30 ng/ml). When compared with the patients classified as vitamin D sufficient (>75 nM or 30 ng/ml), the deficient patients showed greater suppression of hCAP following TLR2/1-activation (12.5-fold decrease vs 3.5-fold decrease, p < 0.05) (Fig. 7A). As part of the study, these patients underwent a course of oral vitamin D therapy (50,000 IU vitamin D\(_2\) twice per week for 5 wk), which significantly increased their serum 25OHD concentrations (24.7 ± 4.1 ng/ml to 40.3 ± 9.7 ng/ml, p < 0.01) (Fig. 7B). Notably, there was no change in the serum levels of 1,25(OH)\(_2\)D in these patients following the course of vitamin D therapy (Fig. 7B). After completion of the course of vitamin D supplementation, patient blood was again used to isolate monocytes for autologous serum cultures (n = 7). Repeat analysis of mRNA expression in these cells following treatment showed that expression of hCAP was significantly higher than when compared with mean data for this group of patients pre-vitamin D supplementation (p = 0.033) (Fig. 7C).

Discussion

In recent years, our perception of what constitutes normal vitamin D status has changed dramatically. Vitamin D sufficiency was originally defined as the minimum serum concentration of 25OHD that would prevent rickets in children and osteomalacia in adults, ~20 nM (8 ng/ml) (11). However, the observation that 25OHD concentrations as high as 80–100 nM (32–40 pg/ml) are inversely correlated with serum parathyroid hormone (17–19), and continue to enhance gastrointestinal calcium uptake (20), have led to a revision of these parameters. Specifically, current data suggest that serum 25OHD is biologically optimal above 75 nM (30 ng/ml), with concentrations between 20 and 75 nM constituting suboptimal levels, or vitamin D insufficiency (21). As a consequence of these new definitions, it has been estimated that as many as 1 billion people worldwide may be classified as vitamin D insufficient (11), with specific groups such as the elderly, children, and pregnant mothers being particularly vulnerable. Individuals with dark skin pigmentation who are less able to generate vitamin D in the epidermis via photolytic modulation of 7-dehydrocholesterol also have a greater risk of vitamin D insufficiency, particularly those living in geographically less sunny areas (22).

The reclassification of optimal vitamin D status raises a key clinical question, namely what are the health consequences of vitamin insufficiency? In common with the rickets/osteomalacia that is characteristic of vitamin D deficiency, suboptimal levels of 25OHD may also compromise skeletal homeostasis, with osteopenia or osteoporosis being the principal problem (21, 23). However, the well-documented nonclassical effects of active 1,25(OH)\(_2\)D
suggest that vitamin D insufficiency will have a much broader clinical impact. In particular, expression of CYP27b1 and VDR by macrophages and dendritic cells has highlighted a potential role for intracrine synthesis of 1,25(OH)₂D₃ as a modulator of both innate and adaptive immunity (1–3). We have shown recently that intracrine conversion of 25OHD to 1,25(OH)₂D₂ by macrophages is potently stimulated by the TLR2/1 ligand 19 kDa, and this in turn induces expression of the antimicrobial peptide hCAP (5). Further studies have confirmed that this is a key requirement for host defense against pathogens such as M. tb (24). Perhaps most significantly we also demonstrated that the efficacy of this innate immune mechanism is dependent on the availability of substrate for macrophage CYP27b1, namely the prohormone 25OHD. Specifically, ex vivo culture of monocytes using serum from 25OHD-sufficient (Caucasian) subjects supported levels of TLR-induced hCAP production that were much higher than observed with serum from 25OHD-deficient (African-American) populations (5). In data presented here, we have expanded these observations to show that the ability of human macrophages to induce antimicrobial hCAP in response to TLR-activation is directly proportional to serum vitamin D status, with this being enhanced in vitamin D-insufficient patients treated with supplementary vitamin D.

Although 1,25(OH)₂D₃ is known to be a direct regulator of hCAP gene expression (25, 26), to our knowledge in Fig. 1 represent the first assessment of the impact of vitamin D metabolites on circulating levels of the antimicrobial peptide. The lack of association between circulating 25OHD, 1,25(OH)₂D₂ and hCAP levels emphasizes the importance of a local, intracrine mechanism of action. However, it should also be recognized that the patients studied in this trial were relatively vitamin D-replete, with 70% of those used in the ex vivo studies being classified as vitamin D sufficient and no patients technically vitamin D “deficient.” Thus, it is possible that circulating levels of hCAP will be more dependent on vitamin D status at very low levels of serum 25OHD. It was also interesting to note that serum levels of hCAP varied considerably independent of either vitamin D metabolite, suggesting alternative determinants of its background expression. The effect of vitamin D on serum hCAP may also be tissue specific: no association was found between serum hCAP protein and its mRNA from PBMCs (see Fig. 2C), suggesting that other cell types contribute to the peripheral reservoir of this antimicrobial peptide (12).

In previous studies, we showed that activation of TLR2-stimulated expression of CYP27b1 and VDR (5). In this study, we show that similar effects are also evident with the TLR4 ligand LPS indicating that induction of localized production of 1,25(OH)₂D₂ may occur in response to gram⁺ or gram⁻ bacteria (Fig. 3). ELISA data suggest that, under these conditions, relatively low levels of 1,25(OH)₂D₂ are generated by human macrophages. Following the addition of 100 nM 25OHD, <50 pM 1,25(OH)₂D₂ was synthesized (see Fig. 3C). Due to the detection limits of the assay kit used, we were unable to quantify any significant changes in 1,25(OH)₂D₂ production using 5 nM 25OHD as substrate for CYP27b1, even when the enzyme was induced by TLR activation. This underlines the relatively low levels of 1,25(OH)₂D₂ produced by this intracrine system, but is also consistent with previous reports in which we demonstrated the relative efficacy of intracrine vs endocrine delivery of 1,25(OH)₂D in regulating immune cell function (4). It was also interesting to note that 100 nM 25OHD facilitated the synthesis of 1,25(OH)₂D without any need for TLR-mediated stimulus. This suggests that there is a low baseline expression of CYP27b1 in macrophages which is capable of synthesizing 1,25(OH)₂D in the presence of high levels of substrate 25OHD, but which requires transcriptional activation via TLRs to effectively metabolize low levels of 25OHD. This proposal was endorsed by hCAP expression studies in Fig. 4 which showed that, in the absence of TLR ligands, 100 nM 25OHD was able to significantly induce expression of mRNA for the antimicrobial peptide. By contrast, 5 nM 25OHD only increased hCAP expression in conjunction with 19 kDa or LPS.

A key observation from this study is that in the absence of any exogenous 25OHD, treatment of macrophages with ligands to TLR2/1 or TLR4 suppressed expression of hCAP (see Fig. 4). This is consistent with similar reports of hCAP inhibition in macrophages infected with M. tb (27), and other pathogenic agents (28, 29). As a consequence of these studies it has been proposed that suppression of antibacterial peptides such as hCAP provides a mechanism by which pathogens escape innate immune surveillance and thereby survive in the host (28). To the best of our knowledge, the data we present in this study are the first to show specific suppression of hCAP by purified TLR ligands. However, it is important to stress that the 10% culture autologous serum concentrations used in this study are effectively equivalent to vitamin D “deficiency” in that the levels of 25OHD to which cells are exposed ex vivo are <10 nM (see Fig. 6). We postulate that in vivo regulation of hCAP by TLR ligands will be different to that observed in vitro because of higher concentrations of serum and concomitantly higher levels of 25OHD. Specifically, in individuals with higher levels of serum 25OHD it is likely that TLR ligands will enhance hCAP expression, while those with low serum 25OHD will have less induction or possibly even suppression of hCAP expression. It is noteworthy that addition of 25OHD at concentrations as low as 5 nM was able to rescue TLR-mediated suppression of hCAP in the autologous serum experiments. In cultures with 10% supplementary serum, this represents an effective concentration of 50 nM in undiluted (100%) serum, enough to change all the vitamin D-insufficient sera into vitamin D-sufficient sera. Similar effects were also observed in vitamin D-insufficient patients whose serum 25OHD levels were elevated in vivo from 25 ng/ml (62 nM) to 40 ng/ml (100 nM) (Fig. 7). Collectively, these data emphasize the fundamental importance of 25OHD as a determinant of hCAP expression following TLR-mediated immune challenge. However, it is also important to recognize that supplementation of any culture medium with 10% serum effectively represents an environment which is 25OHD “insufficient,” and this may have implications for in vitro experimentation per se.

Vitamin D-mediated induction of hCAP appears to have been a relatively recent evolutionary development, as the gene promoter vitamin D response element required for liganded VDR stimulation of this protein is only present in higher primates (26). Consistent with this, comparison of macrophage cell lines cultured under identical conditions of vitamin D insufficiency (i.e., 10% FCS-supplemented medium) showed that 25OHD induced hCAP in human cells but had no effect in mouse macrophages (see supplementary Fig. 2). A potential explanation for this is provided by the fact that under these culture conditions, TLR ligands suppressed hCAP in human THP-1 cells but conversely stimulated this protein in mouse J774A macrophages. Both cell types showed induction of IL-1 expression following treatment with 19 kDa or LPS, indicating similar levels of sensitivity to the TLR ligands. Moreover, in autologous 10% serum-cultured human macrophages and THP-1, cells TLR activation stimulated the related antimicrobial defense DEFB4. Although the gene for DEFB4 also has a promoter vitamin D response element (26), it did not show the same 25OHD-mediated induction observed for hCAP (Fig. 5). Thus, we can speculate that the sensitive regulation of hCAP by vitamin D may have arisen in as a mechanism that countered microbial subversion of innate immune responses. The efficacy of such a mechanism is illustrated by fact that subhuman primates
have greatly elevated circulating levels of 25OHD when compared with humans (30) and thus monocyte synthesis of 1,25(OH)2D in these animals is likely to be an effective way of stimulating hCAP following infection. By contrast, the migration of Homo sapiens out of Africa and into Europe was accompanied by a significant fall in serum 25OHD, and this may have substantially compromised hCAP innate immunity.

Several other factors are also likely to influence the regulation of monocyte hCAP expression following TLR activation including the localized concentration of TLR ligands themselves, and potential modulation by other factors such as cytokines. Moreover, the cohort of donors used in the study were relatively senior (mean age 63.3 ± 14.9), and this may be a significant factor in the defining the interrelationship between TLR-activation, hCAP and vitamin D. In similar studies conducted using monocytes from a younger donor cohort (mean age 33.2 ± 8.2), we observed the same correlation between serum 25OHD concentrations and hCAP mRNA following activation of TLR2/1 (see Appendix 3). However, in this donor cohort (mean age 33.2 D. In similar studies conducted using monocytes from a younger cohort of donors used in the study were relatively senior (mean age 63.3

The authors have no financial conflict of interest.

Disclosures

The authors have no financial conflict of interest.

References