Bioavailability of food folates is 80% of that of folic acid

Renate M Winkels, Ingeborg A Brouwer, Els Siebelink, Martijn B Katan, and Petra Verhoef

ABSTRACT

Background: The bioavailability of natural food folates is lower than that of synthetic folic acid, but no agreement exists as to the extent of the difference.

Objective: In a 4-wk dietary intervention study, we determined the aggregate bioavailability of food folates from fruit, vegetables, and liver relative to that of folic acid.

Design: Seventy-two healthy adults were randomly divided into 4 treatment groups. Group A (n = 29) received a high-folate diet with 369 μg food folate/d and a placebo capsule; groups B, C, and D (n = 14 or 15) received a low-folate diet with 73 μg food folate/d and folic acid capsules. These capsules contained 92 μg folic acid/d for group B, 191 μg for group C, and 289 μg for group D. In addition, all 72 subjects daily ingested a capsule with 58 μg [13C11]-labeled folic acid. We measured the percentage of [13C11]-labeled folate in plasma folate at the end of the intervention and ascertained the changes in serum folate concentrations over the 4 wk of the intervention.

Results: Bioavailability of food folate relative to that of folic acid was 78% (95% CI: 48%, 108%) according to [13C11]-labeled folate and 85% (52%, 118%) according to changes in serum folate concentrations.

Conclusions: The aggregate bioavailability of folates from fruit, vegetables, and liver is ≈80% of that of folic acid. The consumption of a diet rich in food folate can improve the folate status of a population more efficiently than is generally assumed. Am J Clin Nutr 2007;85:465–73.

KEY WORDS Food folate, bioavailability, folic acid, stable isotopes

SUBJECTS AND METHODS

Subjects

Ninety-three healthy men and women, recruited from among the staff and students of Wageningen University and the population of the city of Wageningen, volunteered to take part in the study. During a screening visit, 4 wk before the start of the trial, they filled out a questionnaire and donated a fasting blood sample from which we assessed the baseline concentrations of serum folate.

Folate bioavailability is defined as the proportion of an ingested amount of folate that is absorbed in the gut and that becomes available for metabolic processes. In human intervention studies, relative bioavailability is usually assessed by comparison with a reference dose of folic acid. The bioavailability of food folate is generally lower than that of folic acid, but the extent of the difference is unclear (11, 12).

Recommended daily allowances for food folate take into account its lower bioavailability. The basis for adapting the US recommendations for folate to the lower bioavailability of food folate (5) was derived from a study by Sauberlich et al (13), which stated that the bioavailability of food folate was no more than 50% of that of folic acid. Unfortunately, they did not indicate how that finding was obtained.

Other long-term dietary intervention studies found bioavailability estimates between 30% and 98% of those of folic acid (14, 15). Thus, no clear figure exists for the bioavailability of natural folates as a proportion of that of folic acid. We therefore performed a large, long-term dietary intervention study in which we compared the bioavailability of food folate with that of different doses of folic acid; we simultaneously assessed bioavailability from changes in serum folate concentrations and from stable isotope dilution.
We constructed calibration lines of the percentage of $^{13}$C$_{11}$-labeled folic acid and the change in serum folate in terms of folic acid intake. We then projected the mean percentage of labeled folate in the total pool of plasma folate and of the change in serum folate as a function of folic acid intake in groups B through D. We then projected the mean percentage of labeled folate in plasma folate in group A and the mean change in serum folate in group A on the corresponding calibration line to assess the dose of folic acid to which the food folate in group A was equivalent. The study lasted 31 d; the folate intervention started on day 3 and ended on day 31. Two fasting blood samples were drawn at baseline (days 1 and 3) and after the 4-wk intervention (on days 29 and 31).

**Diet**

Dietitians from the Division of Human Nutrition of Wageningen University estimated the habitual energy intake of the subjects with a validated food-frequency questionnaire before the start of the intervention (18). We provided the subjects with $\approx 90\%$ of their total daily energy requirement during the intervention. Subjects daily had a limited free choice from a list of products that provided the remaining 10% of energy. These free-choice items were mainly nonalcoholic drinks, alcoholic drinks (\(\leq 1\) beer/d), candies, and sweet sandwich fillings. The items contained a low amount of folate and fat. Subjects kept a diary in which they recorded which free-choice items they consumed, whether they took their capsules, illnesses, use of medication, and any deviations from the diet.

The diets we supplied consisted of constant food items and varying food items. The constant part of the diet consisted of whole-wheat bread; margarine; sweet sandwich fillings; cheese, ham, or both; cookies; milk; boiled potatoes, rice, or pasta; and meat or a meat replacement. These constant food items provided $\approx 9$ MJ/d ($\approx 2100$ kcal/d) for a typical participant and were similar for all groups. The varying food items provided $\approx 2$ MJ/d ($\approx 480$ kcal/d) and differed between group A and groups B through D (Table 1).

Although the constant food items were similar for all groups, the amounts of food we supplied varied dependent on the energy requirement of the subjects. The food folate in the constant part of the diet was as low as possible — $\approx 100$ \(\mu\)g folate/9 MJ constant foods—as calculated from food tables (19).

The varying food items for group A were products rich in food folate—$\approx 350$ \(\mu\)g per 2 MJ of varying foods—as calculated from food tables; for groups B through D these products were replaced by similar products low in food folate—$\approx 30$ \(\mu\)g per 2 MJ—as calculated from food tables (Table 1). Vegetables, fruit juices, liver paste, and fruit contributed most to the folate intake in the high-folate group (Figure 2). The varying part of the diet was nearly the same for all 29 subjects in group A, independent of the subject’s energy requirement; only the amounts of dressing,
TABLE 1

Varying food items of the diets in a study of the bioavailability of food folate versus folic acid

<table>
<thead>
<tr>
<th>Foods and groups</th>
<th>Amount per day</th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
<th>Saturday</th>
<th>Sunday</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boiled vegetables</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group A</td>
<td>200 g</td>
<td>Spinach</td>
<td>Brussels sprouts and red pepper</td>
<td>Broad beans and corn</td>
<td>Broccoli</td>
<td>Spinach, corn, and red pepper</td>
<td>Sugar peas</td>
<td>Broccoli and cauliflower</td>
</tr>
<tr>
<td>Groups B-D</td>
<td>100 g</td>
<td>Green beans</td>
<td>Peas and carrots</td>
<td>Mushrooms, leek, and carrots</td>
<td>Red cabbage</td>
<td>Corn, carrots, green pepper, and mushrooms</td>
<td>Carrots</td>
<td>White cabbage, green pepper, and mushrooms</td>
</tr>
<tr>
<td>Salad</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group A</td>
<td>50 g</td>
<td>Chinese cabbage, green pepper, tangerine, and cashews</td>
<td>Endive, red pepper, tangerine, and hazelnuts</td>
<td>Lettuce, chic peas, pineapple, and walnuts</td>
<td>Pakchoi, red pepper, peach, and cashews</td>
<td>Iceberg lettuce, chic peas, dates, and hazelnut</td>
<td>Broccoli, corn, peach, and walnuts</td>
<td>Kohlrabi, corn, dates, and hazelnuts</td>
</tr>
<tr>
<td>Groups B-D</td>
<td>50 g</td>
<td>Blanched celery, tomato, and dates</td>
<td>Cucumber, onion, tomato, and pineapple</td>
<td>Chicory, apple, and raisins</td>
<td>Fennel, cucumber, tomato, and mixed fruit</td>
<td>White cabbage, tomato, pickle, and peach</td>
<td>Radish, cucumber, onion, and pineapple</td>
<td>Carrot, cucumber, and raisins</td>
</tr>
<tr>
<td>Fruit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group A</td>
<td>2 pieces</td>
<td>1 orange and 1 banana or kiwi</td>
</tr>
<tr>
<td>Groups B-D</td>
<td>1 piece</td>
<td>Apple</td>
<td>100 g grapes</td>
<td>Apple</td>
<td>100 g melon</td>
<td>Pear</td>
<td>Apple</td>
<td>Pear</td>
</tr>
<tr>
<td>Fruit juice</td>
<td>400 mL</td>
<td>Orange juice</td>
</tr>
<tr>
<td>Groups B-D</td>
<td>400 mL</td>
<td>Apple or grape juice</td>
</tr>
<tr>
<td>Liver paste²</td>
<td>25 g</td>
<td>Liver paste</td>
</tr>
<tr>
<td>Groups B-D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salad dressing³</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group A</td>
<td>15 g (10–18 g)³</td>
<td>Dressing</td>
<td>Dressing</td>
<td>Dressing</td>
<td>Dressing</td>
<td>Dressing</td>
<td>Dressing</td>
<td>Dressing</td>
</tr>
<tr>
<td>Groups B-D</td>
<td>17 g (14–20 g)³</td>
<td>Dressing</td>
<td>Dressing</td>
<td>Dressing</td>
<td>Dressing</td>
<td>Dressing</td>
<td>Dressing</td>
<td>Dressing</td>
</tr>
<tr>
<td>Sauce or gravy⁴</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group A</td>
<td>53 g (41–68 g)⁴</td>
<td>Sauce or gravy</td>
</tr>
<tr>
<td>Groups B-D</td>
<td>69 g (60–75 g)⁴</td>
<td>Sauce or gravy</td>
</tr>
<tr>
<td>Dessert</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group A</td>
<td>140 g (115–155)⁵</td>
<td>Flavored custard</td>
</tr>
<tr>
<td>Groups B-D</td>
<td>110 g (83–135)⁵</td>
<td>Flavored custard</td>
</tr>
</tbody>
</table>

¹ Group A, the food folate group (fed foods and drinks high in folate); Groups B–D, the folic acid groups (fed equivalent foods and drinks low in food folate plus various doses of folic acid).

² Vegetarians received 12.5 g/d of a yeast-based vegetarian spread (Tartex; Tartex, Freiburg, Germany).

³ Salad dressing and sauce or gravy were prepared with egg yolk for group A and with egg white for groups B–D.

⁴ Median; 25th and 75th percentiles in parentheses (all such values).

⁵ The amount of dressing, sauce, and dessert differed by subject, according to the energy requirement of that subject.

sauce, and dessert were adjusted to individual energy requirements (Table 1). Likewise, the varying part of the diet for groups B through D was nearly the same for all 43 subjects in those groups.

During weekdays, we served hot lunches to all subjects; subjects consumed these meals under our supervision at the Division of Human Nutrition of Wageningen University. We weighed out all foods and beverages for each subject. After lunch, subjects received their package with foods and beverages for their evening meal and for breakfast. On Fridays, subjects received a package with food and beverages for the weekend breakfasts, lunches, and hot dinners, plus instructions for the preparation of these foods.

Meals were prepared from conventional foods and drinks. Folic acid fortification is not mandatory in the Netherlands, and the foods and beverages that we used did not contain added folic acid.

Measurement of nutrients in food samples

We collected a total of 4 duplicate diets on each day of the trial: 2 duplicate diets representative of group A and 2 representative of groups B through D; the energy content of these duplicates was 11 MJ (≈2600 kcal) according to food tables. On weekdays, we collected the duplicates every day at lunchtime. We also collected a duplicate of a package with foods and beverages for the weekend. This was prepared for consumption during the actual weekend and then worked up as described below. We collected, pooled, and analyzed the items of the constant part of the diet separately from the varying food items. For the food folate analyses, hot items were cooled to ≈10 °C immediately after collection in a blast
chiller before they were added to the cold items. We added 250 mL of chilled CHES/HEPES buffer (pH 7.85) with 2% ascorbic acid and 0.2 mol 2-mercaptoethanol/L per kg of food, homogenized it in a blender under a flow of nitrogen, and stored the samples until they were analyzed.

Food folate was analyzed in a selection of the duplicate diets: we selected one random Monday duplicate out of the 4 Mondays of the study of group A and analyzed food folate in both the constant and the varying food items. The same step was taken for all other weekdays. We repeated this selection for diets from groups B through D. In this way, we avoided the thawing and homogenization that would have been necessary if we had pooled the diets of all 4 Mondays of the study. We decided not to analyze folate in all samples, because food folate analysis is time- and labor-intensive. Food folate was analyzed with an HPLC method (20). In short, duplicate diets were thawed, extracted with CHES/HEPES buffer in a boiling water bath for 10 min, and cooled in a water bath at 0 °C. Samples were subjected to trienzyme treatment, purified on an affinity column (Folate Binding Protein; Scripps, San Diego, CA), and analyzed by HPLC with fluorescence and ultraviolet detection. All analyses were performed in duplicate by splitting the sample after it had been thawed.

Duplicate diets for the analyses of energy in the diets were stored at –20 °C. After the study, we thawed these duplicates, pooled the constant parts of each diet per week, pooled the varying food items of each diet per week, and homogenized the pooled items. Samples were stored at –20 °C until they were analyzed. Total fat, protein, dry matter, ash, and fiber were analyzed in these duplicates. From these analyses, we calculated the amount of fat, protein, carbohydrates, fiber, and energy in the diets actually eaten by the subjects.

Capsules

The capsules with folic acid (Merck Eprova, Schaffhausen, Switzerland) were specially produced for this study. We ordered capsules containing 100, 200, and 300 µg. To analyze the actual amount of folic acid, we dissolved capsules in CHES/HEPES buffer pH 7.85 with 2% ascorbic acid and 0.2 mol 2-mercaptoethanol/L in a boiling water bath and measured folic acid by using HPLC with ultraviolet detection (20). The amount of folic acid in a random sample of 20 capsules of each dose was ≈95% of the expected dose.

\[
\text{Percentage of labeled folate} = \frac{100 \times \left[13\text{C}_{11}\right]-5\text{-methyltetrahydrofolate}}{\left[15\text{C}_{0}\right]-5\text{-methyltetrahydrofolate} + \left[13\text{C}_{11}\right]-5\text{-methyltetrahydrofolate}}
\]

where the numerator is the area under the curve of the \([13\text{C}_{11}]-5\text{-methyltetrahydrofolate}\) LC-MS/MS peak and the denominator is the sum of the areas under the curve of the \([13\text{C}_{11}]-5\text{-methyltetrahydrofolate}\) and the \([15\text{C}_{0}]-5\text{-methyltetrahydrofolate}\) LC-MS/MS peaks.

Labeled folate was analyzed only in the samples for days 1 and 29. We chose to analyze labeled folate in only one baseline sample and one follow-up sample because we expected that the estimate for bioavailability derived from labeled folate data would be more precise than the estimate derived from serum folate data, even if analyzed only in one sample. The labeled compound does not occur naturally and was not detected in baseline samples. We restricted our measurements to the 5-methyltetrahydrofolate fraction of the plasma, because this is the most abundant folate vitamer in plasma (22).

Calculation of bioavailability

We plotted the individual percentages of labeled folate in the plasma folate of subjects in groups B, C, and D against the intake of supplemental folic acid. We fitted a linear regression line through these points to construct a calibration line of percentage of labeled folate against the intake of supplemental folic acid. The mean percentage of labeled folate in group A was then projected on this calibration line to assess by interpolation the
dose of folic acid to which the additional amount of food folate in group A (folate\textsubscript{additional}) was equivalent (Figure 3); this dose was called \(X_a\). Relative bioavailability of food folate was derived from \(X_a\) and folate\textsubscript{additional} according to the following equation:

\[
\text{Bioavailability}_{\text{relative}} = 100\% \times \frac{X_a}{\text{folate}\textsubscript{additional}}
\]

(2)

where folate\textsubscript{additional} was calculated with the use of the following equation:

\[
\text{Folate\textsubscript{additional}} = \text{food folate in group A} - \text{food folate in groups B–D (in \(\mu g/d\))}
\]

(3)

The 95% CI associated with this bioavailability estimate was calculated with the use of the following equation:

\[
[\text{Lower limit, upper limit}] = \left[100\% \times (X_a - t_{0.975,n-2} \times S_{X_a})/\text{folate\textsubscript{additional}}, 100\% \times (X_a + t_{0.975,n-2} \times S_{X_a})/\text{folate\textsubscript{additional}}\right]
\]

(4)

and the SE of prediction for \(X_a\) was calculated with the use of the following equation (23):

\[
s_{X_a} = \sqrt{\frac{\text{MSE}/b_1^2}{1/m + 1/n + (X_a - \bar{X})^2/\sum(X_i - \bar{X})^2}}
\]

(5)

where MSE = mean square error; \(b_1\) = the slope of the regression line in percentage change in labeled folate per \(\mu g\) folic acid; \(m\) = the number of subjects in group A; \(n\) = the number of subjects in groups B, C, and D together; \(\bar{X}\) = the mean intake of folic acid in groups B, C, and D in \(\mu g\); and \(X_i\) = the individual intake of folic acid of subjects in groups B, C, and D in \(\mu g\).

We also calculated relative bioavailability from changes in serum folate. In an approach similar to that for the labeled folate data, we plotted the individual changes in serum folate of subjects in groups B through D against the intake of supplemental folic acid and fitted a linear regression line through the data points.

RESULTS

One person in group A became ill before the start of the study, and one each in group C and D dropped out for personal reasons within the first 2 wk. Analyses are based on the 72 subjects who completed the study.

The diaries of the subjects did not show any deviations from the provided diets that may have affected the results. Capsule intake was verified by counting the returned capsules and by checking the subjects’ diaries: mean capsule intake was 99%, and the lowest intake was 90%. Characteristics measured at screening did not differ significantly between groups (Table 2). The mean intakes of energy, protein, fat, carbohydrates, and fiber during the trial did not differ significantly between groups (Table 3). According to analysis of duplicate diets, the food folate intake in group A was 369 \(\mu g/d\), and that in groups B through D was 73 \(\mu g/d\) (Figure 1); thus group A had 296 \(\mu g/d\) more food folate than did groups B through D. Homocysteine concentrations decreased slightly with increasing intakes of folic acid (Table 4).

As expected, the percentage of labeled folate in the plasma folate decreased with increasing intakes of folic acid in groups B through D (Figure 3). The calibration line was calculated with the use of the following equation:

\[
\begin{align*}
\text{Percentage of labeled folate in plasma folate} &= - 0.01616 \times (\mu g \text{ of supplemental folic acid/day}) + 13.47 \\
\end{align*}
\]

(6)

The mean percentage of labeled folate in plasma of group A was 9.7% (Table 4). This value was entered into the equation of the calibration line (Figure 3), and it showed that the extra 296 \(\mu g\) food folate ingested by group A subjects was equivalent to 232 \(\mu g\) folic acid. Therefore, the relative bioavailability of food folate calculated from labeled folate data were—ie, (232/296) \(\times 100\) —was 78% (95% CI: 48%, 108%).

Serum folate concentrations increased linearly with increasing intakes of folic acid in groups B through D (Figure 4). The calibration line was calculated with the use of the following equation:

\[
\begin{align*}
\text{Change in serum folate (nmol/L)} &= 0.02369 \times (\mu g \text{ of supplemental folic acid/day}) - 0.083 \\
\end{align*}
\]

(7)

The mean increase in serum folate in group A was 5.9 nmol/L (Table 4). This value was entered into the equation of the calibration line (Figure 4), and it showed that the extra 296 \(\mu g\) food folate ingested by group A subjects was equivalent to 252 \(\mu g\) folic acid. Therefore, the relative bioavailability of food folate...
were recalculated to the actual energetic intakes, which differed slightly between the 3 groups. Diets providing 11 MJ/d (37 g/d) for group A and 3.4 g/MJ (36 g/d) for groups B–D. No significant differences in energy intake were found between groups by ANOVA. The mean energy intake per group was calculated from food tables (19) and subsequently adjusted for the difference between calculated and analyzed amounts of energy in a diet that provided 11 MJ/d (85% (95% CI: 52%, 118%).

### DISCUSSION

In a 4-wk dietary controlled study, we found that the bioavailability of food folate was 78% of that of folic acid according to an isotope method and 85% of that of folic acid according to changes in serum folate. The fact that the 2 methods yielded similar estimates strengthens the confidence in our finding. Because we have no reason to believe that one method is superior to the other, we consider their average of 82% to be our best estimate for the bioavailability of natural folates.

In the current trial, we carefully controlled the intakes of food folate and folic acid. A problem in studies that aim to compare the bioavailability of food folate and that of folic acid has been the fact that the actual intake of food folate may differ from the targeted dose, because the stability of food folates during cooking is poor and the compliance of subjects with the intervention diet can be low (12). These factors will lead to an underestimation calculated from serum folate data—ie, (252/296) × 100—was 85% (95% CI: 52%, 118%).

### TABLE 2
Characteristics of subjects assessed 4 wk before the start of the 4-wk experimental period

<table>
<thead>
<tr>
<th></th>
<th>Food folate group</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>((n = 29))</td>
<td>((n = 15))</td>
<td>((n = 14))</td>
<td>((n = 14))</td>
</tr>
<tr>
<td>Women (%)</td>
<td>76</td>
<td>73</td>
<td>64</td>
<td>71</td>
</tr>
<tr>
<td>Age (y)</td>
<td>22 (19–41)(^2)</td>
<td>22 (19–48)</td>
<td>23 (20–49)</td>
<td>24 (19–49)</td>
</tr>
<tr>
<td>BMI (kg/m(^2))</td>
<td>23 ± 3(^3)</td>
<td>22 ± 4</td>
<td>22 ± 2</td>
<td>22 ± 3</td>
</tr>
<tr>
<td>Serum folate (nmol/L)</td>
<td>11.3 ± 3.7</td>
<td>11.6 ± 2.9</td>
<td>11.5 ± 4.1</td>
<td>11.9 ± 3.5</td>
</tr>
<tr>
<td>Plasma total homocysteine ((\mu)mol/L)</td>
<td>10.1 ± 0.6</td>
<td>9.7 ± 2.3</td>
<td>10.3 ± 3.4</td>
<td>10.3 ± 3.2</td>
</tr>
<tr>
<td>Serum vitamin B-12 (pmol/L)</td>
<td>219 ± 69</td>
<td>230 ± 68</td>
<td>228 ± 68</td>
<td>191 ± 55</td>
</tr>
<tr>
<td>MTHFR genotype (n)</td>
<td>15</td>
<td>8</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>677CC</td>
<td>13</td>
<td>7</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>677CT</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Vegetarians (%)</td>
<td>17</td>
<td>7</td>
<td>29</td>
<td>14</td>
</tr>
</tbody>
</table>

\(^1\) The group differences were not significant (ANOVA or chi-square test).  
\(^2\) Median; range in parentheses (all such values).  
\(^3\) \(\bar{x} \pm SD\) (all such values).
of the bioavailability of folate from foods. In contrast to food folate, folic acid is very stable, and compliance with taking a pill is likely to be higher than compliance with a prescribed diet. We strictly controlled the intake of both food folate and folic acid in our subjects: the subjects came to our laboratory daily during weekdays to consume a hot lunch plus supplements, and thus a large part of the daily intake of folate and folic acid was supervised. Furthermore, we provided ≈90% of all the foods and beverages for consumption off-site and asked subjects to note in a diary whether they deviated from these supplies. In addition, we based our estimates of bioavailability on the analyzed amounts of folic acid and folate in the capsules and in the duplicates of the diets as actually eaten.

We measured 2 markers for folate bioavailability: the percentage of labeled folate in the plasma folate and changes in serum folate. We expected that the most precise estimate for bioavailability would result from the labeled folate data. Because the labeled compound does not occur naturally, the percentage of labeled folate in plasma had to be evaluated only after the intervention: this approach eliminated the extra error in subtracting 2 measurements from each other. However, the precision was similar for labeled folate and serum folate: the CIs surrounding both estimates for bioavailability had a similar width. For serum folate, the estimate for bioavailability and the width of the CI did not change when we based our calculations only on the measurements in samples from day 1 and day 29 (data not shown). Therefore, in this experimental set-up, the expensive stable-isotope method yielded no advantage over serum folate measurements. However, the fact that the 2 methods yielded similar numbers emphasizes the internal consistency of the study and strengthens the confidence in our outcome. We used folic acid labeled with 11\(^{13}\)C atoms in the current intervention, because we had in stock from earlier experiments. Using cheaper forms of folic acid would not have made the intervention much cheaper because the LC-MS/MS analysis is much more expensive than is the use of the labeled compound itself.

The participants ingested the folic acid capsules just before their hot lunch, which may have affected the serum folate responses in groups B through D and, hence, the estimate for relative bioavailability. Pfeiffer et al (24) found that the serum folate response to a folic acid supplement taken together with a light meal was 15% lower than the folate response to a folic acid supplement taken on an empty stomach. The difference was not significant, but if it were valid, then the calibration line as plotted

### Table 4

Effect of a high-folate diet (group A) and of low-folate diets with increasing amounts of folic acid (groups B–D) on the percentage of labeled folate in plasma folate and on concentrations of serum folate and plasma total homocysteine

<table>
<thead>
<tr>
<th>Food folate group</th>
<th>Folic acid groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n = 29)</td>
<td>(n = 15)</td>
</tr>
<tr>
<td>(n = 14)</td>
<td>(n = 14)</td>
</tr>
<tr>
<td>Labeled folate (% of total folate)</td>
<td>9.7 ± 2.0</td>
</tr>
<tr>
<td>Serum folate (nmol/L)</td>
<td>12.1 ± 4.0</td>
</tr>
<tr>
<td>Baseline</td>
<td>15.0 ± 3.4</td>
</tr>
<tr>
<td>Week 4</td>
<td>5.9 ± 3.9</td>
</tr>
<tr>
<td>Change from baseline to week 4(^4)</td>
<td>-0.8 ± 1.4</td>
</tr>
<tr>
<td>Plasma total homocysteine (μmol/L)</td>
<td></td>
</tr>
<tr>
<td>Change from baseline to week 4(^4)</td>
<td></td>
</tr>
</tbody>
</table>

\(^1\) All values are \(\bar{x} \pm SD\).

\(^2\) The labeled compound does not occur naturally and was not detected in baseline samples.

\(^3\) Changes in serum folate differed significantly between groups (ANOVA with post hoc Bonferroni tests): group A differed from group C (P = 0.043), group B differed from group D (P = 0.006), and group C differed from group D (P = 0.003).

\(^4\) Changes in homocysteine did not differ significantly between groups (ANOVA).

### Figure 4

Change in serum folate from baseline to week 4 in the folic acid groups (B through D). Each symbol represents 1 subject: □, group B; ○, group C; ×, group D; —, the linear regression line through the individual data points of groups B, C, and D. The mean change in serum folate in group A was 5.9 nmol/L. This was projected on the regression line, and it corresponded to an estimated intake of folic acid of 252 μg (broken lines). The \(R^2\) of the regression line was 0.22, and the slope was 0.02369 (95% CI: 0.00948, 0.03789).
in Figure 4 would have been steeper and the bioavailability estimate for food folates would have been lower if subjects had ingested the capsules on an empty stomach. We plotted a linear calibration line in Figure 2. However, a lack of fit test showed that the linear model was not the best model with which to describe our data: the addition of a second-order term to the model improved the $R^2$ and the model’s fit to the data (data not shown). Estimation of bioavailability from this second-order regression line produced a slightly higher value for bioavailability of food folate (89%) than did the linear model (85%). This finding reinforces our conclusion that the bioavailability of folate is higher than previously reported. We decided to use a linear regression model to fit our data, because other, larger studies (25, 26) found that the relation between the intake of folic acid and the change in serum folate is linear over the range of intakes that we used.

HPLC analysis of folate in food generally results in lower values than does microbiological analysis (1, 27), and therefore the bioavailability figures for food folate generally will be higher when based on HPLC analysis. Previous bioavailability studies (13–15) analyzed food folate with microbiological assays. Therefore, we also analyzed our food samples microbiologically (28), and that approach yielded a food folate intake in group A of 474 µg/d and 136 µg/d in groups B through D; the food folate in group A was therefore 338 µg/d greater than that in groups B through D. This finding resulted in a bioavailability of (232/338) × 100 = 68% (95% CI: 42%, 95%) according to labeled folate data or (252/338) × 100 = 75% (95% CI: 45%, 103%) according to changes in serum folate. Thus, the estimate for bioavailability was 10% lower with microbiologically derived figures than when based on HPLC analysis.

Our findings disagree with a statement by Sauberlich et al (13), who said that “when compared with synthetic PGA (pteroyl glutamic acid), dietary folates appeared to be no more than 50% available.” Unfortunately, those authors did not indicate how this finding was obtained. In our opinion, the less-than-suitable design and small size of this study—with 3–4 subjects per treatment group—and the absence of a folic acid group make it impossible to compare the bioavailability of natural folates with that of folic acid from these data. Our results also differ from those of Hannon-Fletcher et al (15). In that study, subjects consumed a folate-depleted carrier meal to which food folates extracted from spinach or from yeast were added or they consumed the carrier meal together with folic acid in a tablet; meals were provided daily for 30 d. On the basis of changes in serum folate, the bioavailability of spinach folate and yeast folate was 36% and 62%, respectively, of that of folic acid. However, the addition of these 2 sources of folate to meals is not representative for folates from whole diets: in whole diets, folates originate from various sources and matrixes of foods. Furthermore food intake was not controlled. These factors limit the usefulness of the bioavailability findings in this study. The findings in the current study are, however, in excellent agreement with those of Brouwer et al (14), who conducted a 4-wk, highly controlled intervention study and found that bioavailability of food folate from fruit and vegetables was 78% of that of folic acid, according to changes in plasma folate.

We composed a diet high in folate by selecting fruit and vegetables rich in folate, by providing liver paste as sandwich filling, and by adding egg yolk to sauces and salad dressings. Fruit and vegetables were the main source, providing 73% of the additional folate in group A (Figure 2). Besides fruit and vegetables, unfortified bread and cereals are important sources of folate in the general population (1, 2). However, it was not feasible to include these foods in the varying food items of group A, because we could not replace them with similar products low in folate for groups B through D. Bioavailability of folates from food is influenced by a number of food-related factors, eg, the species of folate in the food, the number of glutamate residues attached to the folate molecule, and the food matrix (29). Because cereals and fruit and vegetables are all plant foods, similarities in factors that affect bioavailability for these food groups are likely to exist. Therefore, we speculate that our findings will also be applicable for diets in which cereals are an important folate source, but this possibility requires confirmation.

Our findings and those of Brouwer et al (14) indicate that bioavailability of food folates is higher than generally assumed—namely, for folate as measured by HPLC, it is 80% of that of folic acid from capsules taken with a meal. Subjects in group A consumed a total of 369 µg folate/d from foods, which is equivalent to 295 µg folic acid. Their diet did include 25 g liver paste/d and 400 mL orange juice/d, which may not be to everyone’s liking. Nevertheless, we think it is quite feasible for a healthy varied diet to provide the equivalent of 300 µg folic acid/d. The value of 50% bioavailability for folates from food, as used in the construction of recommended daily allowances (5), underestimates the bioavailability of food folates. The use of this low number could lead to skepticism about the importance of a healthy diet as a source of folate: our data suggest that such skepticism may be unwarranted. Our data show that consumption of a diet rich in folate can improve the folate status of a population more efficiently than is generally assumed.

The late Clive West was one of the initiators of this study and contributed greatly to its design. We thank the subjects for their enthusiastic participation in the trial; Alida Melse-Boonstra and Jan Burema for their advice on design and statistical analysis; Lena Leder and the dietitians for their assistance during the trial; and the Pharmacy of the Gelderse Vallei Hospital for manufacturing capsules. This study was conducted under ClinicalTrials.gov Identifier no. NCT00130585.

All authors were involved in the design of the study; RMW wrote the manuscript, and IAB, ES, MK, and PV reviewed and edited the manuscript; ES designed the diets; and IAB, ES, and RMW contributed to the performance of the study. None of the authors had a personal or financial conflict of interest.

REFERENCES