Tissue iron deficiency without anemia impairs adaptation in endurance capacity after aerobic training in previously untrained women

Thomas Brownlie IV, Virginia Utermohlen, Pamela S Hinton, and Jere D Haas

ABSTRACT

Background: We previously showed that iron supplementation significantly improves iron status and maximal work capacity in previously untrained, marginally iron-deficient women with a baseline serum transferrin receptor concentration > 8.0 mg/L. However, the effect of transferrin receptor status on adaptation in endurance capacity after aerobic training in these subjects has not been fully explored.

Objective: Our objective was to examine the effect of baseline serum transferrin receptor status on adaptations in endurance capacity.

Design: Forty-one untrained, iron-depleted, nonanemic women were randomly assigned to receive either 100 mg FeSO₄ or a placebo for 6 wk in a double-blind trial. All subjects trained on cycle ergometers 5 d/wk for the last 4 wk of the study. Endurance capacity was assessed at baseline and after treatment by using a 15-km time trial conducted on a cycle ergometer.

Results: Significant treatment effects were observed for time to complete the 15-km time trial, work rate, and percentage of maximal oxygen uptake in subjects with a baseline serum transferrin receptor concentration > 8.0 mg/L. No significant treatment effects were observed in subjects with a normal baseline transferrin receptor concentration.

Conclusions: Our findings suggest that, in the presence of overt tissue iron deficiency, iron deficiency without anemia impairs adaptation in endurance capacity after aerobic training in previously untrained women. This impairment can be corrected with iron supplementation.

KEY WORDS Iron deficiency without anemia, iron depletion, aerobic training, serum transferrin receptors, serum ferritin, endurance capacity, women

INTRODUCTION

Iron deficiency anemia has been shown to reduce maximal work capacity, endurance capacity, and voluntary activity (1). However, the functional consequences of iron deficiency without anemia are not fully understood, despite a high prevalence in the United States and worldwide (2).

Animal studies showed that concentrations and activities of iron-containing muscle oxidative enzymes and respiratory proteins decrease during iron deficiency without anemia (3–6). Moreover, iron deficiency without anemia has been shown to reduce endurance capacity and diminish the effects of training in animal models (3, 5–8). Conversely, findings from human studies examining the relation between iron deficiency without anemia and adaptation to training are equivocal (9–13).

Previous work in our laboratory showed that after work rate is controlled for, iron deficiency without anemia reduces the endurance capacity of untrained women by increasing energy expenditure (EE) and percentage of maximal oxygen uptake (%VO₂ max) (14). In a subsequent study, we examined the effects of iron deficiency without anemia on adaptations to aerobic training. We found that iron supplementation significantly enhanced adaptations in both maximal work capacity (15) and endurance capacity (13) after training. Additionally, we found significant interactions between baseline serum transferrin receptor (sTfR) concentrations and treatment group on improvements in iron status, maximal work capacity, and endurance performance (13, 15). These findings showed that initial sTfR concentrations modify the effects of iron supplementation on adaptation in VO₂ max (15), time to complete a 15-km time trial, percentage of maximal capacity at which subjects work during a trial, and work rate (13).

Stratified analyses were conducted to further examine the relation between initial sTfR status and improvements in maximal work capacity. The stratified analyses showed that the significant treatment effects that were observed for iron status and maximal work capacity were due to improvements in the subjects who began the study with an elevated sTfR concentration (ie, in the subjects whose tissue iron status was more depleted) (15). No significant treatment effects were observed in the subjects who had a normal sTfR concentration. These findings prompted us to further examine the effect of baseline sTfR status on adaptations in endurance performance by using stratified analyses. We expected that subjects with an elevated baseline sTfR concentration would have the greatest improvements in endurance capacity after iron supplementation and training. Results from these analyses are reported in this article.

SUBJECTS AND METHODS

Subjects

Two hundred seventy-one physically active, untrained women aged between 18 and 33 y were recruited from the local community through fliers, newspaper announcements, and internet list-
ings. After preliminary screenings, 51 women were identified as iron depleted and nonanemic on the basis of a serum ferritin concentration < 16 µg/L and a hemoglobin concentration > 120 g/L. Forty-nine women gave signed informed consent to participate in the study. After a medical examination, which included a medical history, none of the subjects were excluded from the study on the basis of the following criteria: current pregnancy or pregnancy within the previous year, recent infectious illness or fever, hemolytic anemia, asthma, musculoskeletal problems, recent history of eating disorders, smoking, excess alcohol consumption, recent use of recreational drugs, consumption of prescription medications that may interfere with dietary iron absorption, or participation in competitive athletics. The Cornell University Committee on Human Subjects approved this study.

Study design

The study was a randomized, double-blind, placebo-controlled intervention trial. Subjects were randomly assigned to receive either an iron supplement (50 mg FeSO₄, 8 mg elemental Fe) or an identical placebo capsule twice daily for 6 wk. All supplements were prepared in our laboratory by using gelatin capsules (Apothecary Products Inc, Minneapolis). The iron supplements contained ferrous sulfate plus lactose filler, and the placebo supplements contained only lactose filler. From a random sample of 20 capsules, the mean (± SD) ferrous sulfate content of the iron capsules was determined to be 49.4 ± 4.2 mg. The subjects were instructed to consume the capsules with citrus juice to enhance iron absorption and with meals to reduce possible side effects. They were also instructed to avoid consumption of any other multivitamin or mineral supplements during the entire study period. The subjects recorded capsule ingestion, consumption of medication, illness, menstrual status, gastrointestinal symptoms, physical activity, and musculoskeletal problems in a daily log. The subjects and the investigators were blinded to the group assignment until completion of the data collection.

Training

The subjects trained 5 d/wk for 4 wk beginning on the first day of week 3 of the study. To ensure that the subjects understood and complied with the training protocols, the first training session of each week was supervised. All other training sessions were self-reported. Training was performed in the research laboratory on a cycle ergometer (Ergociser E-3200; CatEye Co, Ltd, Osaka, Japan) equipped with a heart rate (HR) monitor and digital output of cadence (in rpm) and work (in W). The training sessions consisted of a 4-min warm-up at no resistance; a 25-min cycling session divided between workloads that were targeted at 75% and 85% of the subjects’ maximum HR (HRmax), as determined during a previous test of peak work capacity (see below); and a 1-min cooldown. Over the 4 wk, time spent training at 85% HRmax increased weekly from 5 to 15 min with a corresponding decrease in the duration of cycling at 75% HRmax. The first week of training consisted of cycling for 20 min at 75% HRmax followed by 5 min at 85% HRmax. Week 2 consisted of cycling for 18 min at 75% HRmax and 7 min at 85% HRmax. By week 4 subjects cycled for 10 min at 75% HRmax and 15 min at 85% HRmax. Subjects recorded HR, average pedaling rate (cadence), and work (W) for each training session in a training log.

Prestudy habitual physical activity levels were assessed by a frequency questionnaire, which was analyzed by using the method described previously (16) to obtain a physical activity score for each subject. This was done to ensure similar habitual physical activity levels between the groups after randomization. The subjects were asked to maintain the same nontraining activity level during the entire study period to ensure that the prescribed training regimen was the only additional source of training.

For all the subjects, body composition and physical performance were measured immediately before and after the 6-wk treatment period. In addition, dietary iron intake was assessed from a 4-d dietary record. All dietary records were analyzed by using NUTRITIONIST IV (version 3.0; First Databank, Inc, San Bruno, CA).

Physiologic measurements

Exercise tests were conducted on a mechanically braked, calibrated cycle ergometer (model 818E; Monark, Varberg, Sweden) with the use of a computerized metabolic cart (Physiodyne, Quogue, NY) in the Human Bioenergetics Laboratory at Cornell University. The ergometer was equipped with a digital readout of cadence (in rpm) and distance (in km) pedaled. Concentrations of oxygen and carbon dioxide in expired air were analyzed with Ametek gas analyzers (Pittsburgh); respiratory volume was analyzed with a Fitco Micro Flow respiratory pneumotachograph (Fitness Instrument Technologies, Farmingdale, NY). A Hans Rudolph T-Shaped breathing valve was used for all tests (Kansas City, MO). Data output from the instruments was directed to an IBM 386 computer (Gateway, Inc, Poway, CA) for breath-by-breath calculation of oxygen consumption (VO₂), CO₂ production (VCO₂), respiratory exchange ratio (RER, VCO₂/VO₂), and minute ventilation. HR was monitored throughout the tests with an electrocardiograph (Burdick, Milton, WI). Electrocardiograph leads were connected at sites V1 and V6 and between intercostals 3 and 4 on the right side of the rib cage.

The subjects were asked not to perform any strenuous physical activities 2 d before the exercise tests. To control for the effects of dietary intake before exercise testing, the subjects were asked to start recording their food intake 3 d before baseline exercise testing and to continue the recording through the last day of baseline testing. They were instructed to consume the same diet for the baseline and posttreatment exercise tests. The subjects were instructed not to consume food or caffeinated beverages 3 h before exercise testing.

Peak maximal work capacity (VO₂max) was assessed as previously described (15). Endurance performance was assessed from a 15-km time trial, which was divided into three 5-km bouts. Between each bout, the subjects were provided water and allowed to rest for 2 min. The subjects were asked to finish each bout as quickly as possible. The workload was standardized for each subject by setting the resistance to achieve 70% of VO₂max while the subject pedaled at 60 rpm (determined from the peak maximal work capacity test). The same resistance was used at the baseline and posttreatment endurance tests.

Performance was based on time to complete the time trial (TT time), mean oxygen consumption per minute (absolute VO₂), mean oxygen consumption per minute per kilogram of fat-free mass (relative VO₂), the ratio of mean VO₂ to VO₂max (%VO₂max), mean HR, mean RER, total EE, EE per minute, and external work performed per minute (work rate). Work rate (in W) was calculated from cadence (in rpm) and ergometer resistance (in kilopounds). EE in kilocalories was calculated from the
average VO₂ and average nonprotein RER according to McArdle et al (17). EE in watts was calculated by multiplying EE in kilocalories by a conversion factor of 69.75. Efficiency (energy expended/external work performed) was calculated as the ratio of EE/min (in W) to work rate (in W).

Body size and composition were measured in the Human Body Composition Laboratory at Cornell University. Anthropometric measurements (weight, height) were made by using standard procedures described in Lohman et al (18). Percentage body fat and fat-free mass were determined by densitometry with the use of the technique described by Akers and Buskirk (19). The Siri equation adapted for females was used, and the sex-specific density of fat-free mass was assumed to be 1.096 g/mL (20).

Iron-status measurements

Iron status was assessed from nonfasting blood samples that were collected at screening, baseline, and the end of weeks 3 and 6. Because serum iron-status indicators are not immediately influenced by food intake, the subjects did not fast before having their blood drawn. Because of time and scheduling constraints, neither the time of day at which the samples were drawn (1000–1400) nor menstrual phase was standardized. However, any possible confounding effect that either of these factors may have had on iron status was controlled for through randomization.

Hemoglobin and hematocrit were assayed in whole blood immediately after sample collection. To control for potential variation in assay conditions, all plasma and serum samples were frozen at −20 °C for ≤3 mo. Each subject’s complete set of samples was then analyzed concurrently at the completion of the study.

Hemoglobin concentrations were measured by using the cyanmethemoglobin method described by van Assendelft and England (21) (Sigma Diagnostics, St Louis). Hematocrit was determined by using the microhematocrit method. Soluble sTfR and serum ferritin concentrations were measured by using enzyme-linked immunosorbent assays with commercial kits (Ramco Laboratories, Houston) according to the methods of Flowers et al (22, 23). Transferrin saturation was determined from the ratio of serum iron to total-iron-binding capacity by the method described by Persijn et al (24) (Sigma Diagnostics).

Statistical analysis

Data were examined to verify normality of distribution. Results are expressed as means ± SEMs. Independent Student’s t test was used to test group differences at baseline. Three-factor repeated-measures analysis of variance was used to assess the effect of baseline sTfR on iron and fitness outcomes. When significant group × time × baseline sTfR interactions were observed, the data were stratified by baseline sTfR to further examine the relations. To maximize the likelihood that subjects in the upper stratum were truly tissue iron deficient (normal range: 2.8–8.5 µg/L) (23) and to maintain an adequate sample size within each stratum, we chose a cutoff of 8.0 µg/L.

Repeated-measures analysis of variance was used to test group and time effects as well as group × time interactions for both iron status and fitness outcomes. An exact F test statistic was used for all repeated-measures analyses. Statistical significance was indicated at P < 0.05. Statistical analyses were performed by using JMP version 3.1.5 (SAS Institute Inc, Cary, NC).

RESULTS

Subject characteristics

Forty-nine women participated in the study. Three women dropped out during the study for personal reasons not related to the study. Data for 4 additional women were excluded from analysis because of the exclusion criteria of high baseline serum ferritin concentrations (> 16 µg/L), which indicated that their ferritin values at screening caused them to be misclassified as iron depleted; one subject was excluded because of missing data for VO₂ max. The final sample included 19 subjects in the placebo group and 22 subjects in the iron group. Those who dropped out or were excluded were not different in baseline body composition, iron status, or physical performance from those who completed the study.

Diet analysis

Results from the 4-d dietary records are presented in Table 1. There were no significant differences in the amounts of calories, iron, vitamin C, calcium, or fiber consumed per day or in the percentage of energy derived from protein. However, the iron group reported consuming a significantly lower percentage of energy from carbohydrates (P < 0.05) and a significantly higher percentage of energy from fat (P < 0.05) than did the placebo group.

Training

The total number of training sessions (placebo group, 19.7 ± 0.1 d; iron group, 19.9 ± 0.1 d) and the total work performed

Table 1

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy (kcal/d)</td>
<td></td>
</tr>
<tr>
<td>Placebo group</td>
<td>1769 ± 94</td>
</tr>
<tr>
<td>Iron group</td>
<td>1560 ± 82</td>
</tr>
<tr>
<td>Carbohydrates (% of energy)</td>
<td></td>
</tr>
<tr>
<td>Placebo group</td>
<td>63.4 ± 1.8</td>
</tr>
<tr>
<td>Iron group</td>
<td>58.1 ± 1.7²</td>
</tr>
<tr>
<td>Protein (% of energy)</td>
<td></td>
</tr>
<tr>
<td>Placebo group</td>
<td>14.0 ± 0.6</td>
</tr>
<tr>
<td>Iron group</td>
<td>13.7 ± 0.6</td>
</tr>
<tr>
<td>Fat (% of energy)</td>
<td></td>
</tr>
<tr>
<td>Placebo group</td>
<td>22.0 ± 1.8</td>
</tr>
<tr>
<td>Iron group</td>
<td>28.0 ± 1.7²</td>
</tr>
<tr>
<td>Iron (mg/d)</td>
<td></td>
</tr>
<tr>
<td>Placebo group</td>
<td>14.8 ± 2.6</td>
</tr>
<tr>
<td>Iron group</td>
<td>14.4 ± 1.4</td>
</tr>
<tr>
<td>Vitamin C (mg/d)</td>
<td></td>
</tr>
<tr>
<td>Placebo group</td>
<td>144 ± 43</td>
</tr>
<tr>
<td>Iron group</td>
<td>118 ± 18</td>
</tr>
<tr>
<td>Calcium (mg/d)</td>
<td></td>
</tr>
<tr>
<td>Placebo group</td>
<td>883 ± 123</td>
</tr>
<tr>
<td>Iron group</td>
<td>703 ± 74</td>
</tr>
<tr>
<td>Fiber (g/d)</td>
<td></td>
</tr>
<tr>
<td>Placebo group</td>
<td>16.9 ± 2.1</td>
</tr>
<tr>
<td>Iron group</td>
<td>13.4 ± 1.3</td>
</tr>
</tbody>
</table>

¹ ± SEM; n = 19 in the placebo group and 22 in the iron group.
² Significantly different from the placebo group, P < 0.05 (Student’s two-tailed t test).
Iron responses in the complete sample are presented in Table 2. Significant group \(\times \) time interactions were observed for serum iron and transferrin saturation. Significant time effects were observed for hematocrit, serum ferritin, serum iron, and transferrin saturation. A significant group effect was observed for serum ferritin. No significant treatment effects were observed for sTfR, total-iron-binding capacity, or hemoglobin. Because significant differences were observed in the percentage of energy derived from carbohydrates and fat, these variables were included as covariates in statistical models to exclude possible confounding of iron responses by diet. None of the variables were significant in the models and were subsequently removed.

Physiologic responses

After posttreatment \(\% \text{VO}_2\text{max} \) was controlled for, three-way repeated-measures analysis of variance showed a significant group \(\times \) time \(\times \) baseline sTfR interaction (\(P = 0.027 \)) for change in TT time. Similarly, significant interactions were observed for change in work rate after posttreatment \(\% \text{VO}_2\text{max} \) was controlled for (\(P = 0.026 \)) and for change in \(\% \text{VO}_2\text{max} \) after change in work rate was controlled for (\(P = 0.028 \)).

No significant three-way interactions were observed for absolute \(\text{VO}_2 \), relative \(\text{VO}_2 \), HR, RER, total EE, EE/min, or efficiency. However, there were significant time effects for all but total EE and efficiency. Results for these responses are presented in Table 3.
on the physiologic responses. The stratified analyses are presented in Table 4. There were no significant differences in baseline endurance performance between the sTfR strata.

In the subjects with an elevated sTfR concentration, a significant group \times time interaction (P < 0.05) was observed for \%VO\textsubscript{2}\text{max}. The iron group also tended to have greater improvements in TT time (group \times time interaction, P = 0.07) and work rate (group \times time interaction, P = 0.07) than did the placebo group; however, these differences were not significant.

Significant effects of time (P < 0.05) were observed for TT time, absolute VO\textsubscript{2}, relative VO\textsubscript{2}, \%VO\textsubscript{2}\text{max}, HR, RER, EE/min, and work rate in subjects with a normal baseline sTfR concentration. However, there were no significant group \times time interactions.

Similar to the iron analyses, percentages of energy derived from carbohydrates and fat were included as covariates in preliminary statistical models to exclude possible confounding by diet. None of the variables were significant in the models and were subsequently removed.

Physiologic responses stratified by 5-km bout

Because the time trial was conducted as three 5-km bouts separated by 2-min breaks, the data for each 5-km bout were also analyzed separately. Results from these analyses are depicted in Figures 1–3. For clarity of presentation, results for subjects with normal and elevated baseline sTfR concentrations are depicted separately.

As shown in Figure 1A, there were no significant group effects or group \times time interactions for change in work rate during any of the 5-km bouts in the subjects with a normal baseline sTfR concentration. However, there were significant effects of time.
As shown in Figure 3A, there were no significant group effects or group × time interactions for \(\dot{V}O_2 \max \) during any of the 5-km bouts in the subjects with a normal baseline sTfR concentration. However, there were significant effects of time for the first and second 5-km bouts (\(P < 0.05 \)). Conversely, as shown in Figure 3B, there were significant group × time interactions for change in \(\dot{V}O_2 \max \) during the first and second 5-km bouts in the subjects with an elevated baseline sTfR concentration after change in work rate and posttreatment work rate, respectively, were controlled for. Moreover, \% \dot{V}O_2 \max \) during the third 5-km bout also tended to decrease more in the subjects in the iron group than in those in the placebo group; however, the group × time interaction was not significant (\(P < 0.10 \)).

DISCUSSION

Animal studies have consistently shown that iron deficiency without anemia reduces iron-containing oxidative enzyme concentrations and activities and, in turn, impairs endurance capacity (3–6, 8). Human studies have yielded suggestive results (9, 14), but none have shown a strong, consistent relation between iron deficiency without anemia and alterations in endurance performance or adaptations in endurance performance. One possible explanation for this discrepancy may be that the human studies have failed to show alterations in tissue iron status or iron-containing oxidative enzymes in their subjects. Consequently, the conclusions that can be drawn from these studies are limited.

The present study was the first training study to use sTfR as an indicator of tissue iron status. Before accounting for sTfR, we found one significant group × time interaction effect on endurance: TT time (13). However, stratifying the data by baseline sTfR concentration and by time trial bout showed significant group × time interactions for time, work rate, and \% \dot{V}O_2 \max \) in the subjects with an elevated baseline sTfR concentration (Table 4, Figures 1–3). Specifically, the subjects who began the study with a more depleted tissue iron status and received iron supplements worked at a significantly lower percentage of their maximal work capacity during the first and second 5-km bouts of the posttreatment time trial than did those who began the study with normal tissue iron status and received placebos.

In contrast, there were no group differences between the iron and placebo groups in posttreatment performance in the subjects who began the study with normal tissue iron status. In fact, subjects in both groups who began the study with normal tissue iron status had significant improvements in almost all physio-
logic responses, which suggests that iron status did not impair
their ability to adapt to aerobic training.

One possible explanation for the greater improvements in
fitness among the more tissue iron–depleted subjects is func-
tional anemia, such that tissue depletion served as a proxy for
impaired hemoglobin production. Although none of our subjects
at baseline were anemic on the basis of the conventional cutoff
(< 120 g/L), hemoglobin production may have been impaired in
the more depleted women and thus may have resulted in reduced
oxygen-carrying capacity. However, if functional anemia were
the underlying cause of this greater adaptive response, one would
expect both greater changes in hemoglobin and fitness adaptation
among those classified as more depleted at baseline, and changes
in hemoglobin would be correlated with changes in fitness. Our
data do not support this explanation. Subjects with an elevated
sTfR concentration at baseline did not have greater improve-
ments in hemoglobin concentration during the study, nor were
changes in hemoglobin concentration correlated with improve-
ments in fitness.

Alternatively, greater mitochondrial and myoglobin adapta-
tions may explain why tissue iron–deficient subjects had greater
improvements in fitness. Training is known to increase iron-
dependent mitochondrial constituents in the presence of suffi-
cient cellular resources (25). Thus, the subjects who had the
largest improvements in tissue iron status were also more likely
to have the largest increases in concentrations of myoglobin and
iron-containing oxidative enzymes in muscle tissue.

The present study provides additional evidence that sTfR sta-
tus can be used to distinguish between iron depletion and func-
tional iron deficiency and that functional iron deficiency impairs
adaptation in endurance capacity after aerobic training. Further-
more, iron depletion without tissue iron deficiency does not im-
pair adaptation after training, and improvements in iron status
in these subjects do not enhance their ability to adapt to training.
Future research would benefit from a more detailed character-
zation of the relation between iron-status indicators and from the
development of a cutoff value for sTfR that is sensitive to func-
tional changes in iron status.

We gratefully acknowledge the technical assistance of Jackie Cohen,
Christina Giordano, Nazaneen Grant, and Linda Bennett in blood sample
collection.

JDH designed the study. JDH, TB, and PSH coordinated the study. TB and
PSH collected the data. TB performed the statistical analyses and wrote the
manuscript. VU provided statistical and analytic advice and support. All
researchers reviewed the final version of the manuscript. None of the authors
had any conflicts of interest to report.

REFERENCES

1. Haas J, Brownlie T IV. Iron deficiency anemia and reduced work ca-
pacity: a critical review of the research to determine a causal relationship.

2. Looker A, Dallman P, Carroll M, Gunter E, Johnson C. Prevalence of iron

4. Davies K, Maguire J, Brooks G, Dallman P, Packer L. Muscle mito-
ochondrial bioenergetics, oxygen supply, and work capacity during di-

effects of anemia and muscle iron deficiency on exercise bioenergetics

and training on mitochondrial enzymes in skeletal muscles. J Appl

Work performance in the iron-deficient rat: improved endurance with

8. Tobin B, Beard J, Kenney W. Exercise training alters feed efficiency and
52–9.

on the exercise capacity of non-anemic iron-deficient adolescent run-

10. Jenson C, Weaver C. Iron supplementation and iron status in exercising

11. Klinginshirn L, Rute P, Bourque S, Davis J, Sargent R. Effects of iron
supplementation on endurance capacity in iron-depleted female runners.

12. LaManca J, Haymes E. Effects of iron repletion on VO2 max, endur-
ance, and blood lactate in iron-depleted female runners. Med Sci Sports Exerc

13. Hinton P, Giordano C, Brownlie T, Haas J. Iron supplementation im-
proves endurance after training in iron-depleted, non-anemic women.

deficiency without anemia impairs aerobic adaptation among previously

16. Zhu Y, Haas J. Iron depletion without anemia and physical performance

18. Lohman T, Roche A, Martorell R. Anthropometric standardization ref-

19. Akers R, Buskirk E. An underwater weighing system utilizing “force

ferritin assay for prevalence studies of iron deficiency. Am J Hematol
1986;23:141–51.

23. Flowers C, Skikne B, Covell A, Cook J. The clinical measurement of

24. Persijn J, Slik W, Riehorst A. Determination of serum iron and latent

25. Holloszy J, Coyle E. Adaptations of skeletal muscle to endurance exer-