risk factors involved. The current study aimed to investigate the role of resilience in the association between changes in sleep and the subjective sleep quality (SSQ) in teens and young adults during COVID-19.

Methods: 289 teens (12-17 years old) and 294 young adults (18-25 years old) completed the Connor-Davidson Resilience Scale-10 and an adapted version of the Pittsburgh Sleep Quality Index online. Teens and young adults were each divided into a resilient and less resilient group. Hierarchical regression models were conducted to examine the unique contribution of weekdays sleep duration, sleep difficulties, and resilience to SSQ. Sleep duration, sleep difficulties and SSQ before COVID-19, and gender were entered as controls.

Results: Results show that in less resilient teens, changes in sleep onset difficulties ($\beta=-.285, p=.003$), nocturnal and early awakenings ($\beta=-.218, p=.019$), and weekdays sleep duration ($\beta=.282, p=.001$) significantly predicted SSQ and explained 36.5% of the variance. In less resilient young adults, changes in nightmares ($\beta=-.309, p=.027$) and sleep onset difficulties ($\beta=-.263, p=.012$) significantly predicted SSQ and explained 24.1% of the variance. In resilient teens, changes in weekdays sleep duration ($\beta=-.296, p=.007$) significantly predicted SSQ and explained 20.1% of the variance. In resilient adults, changes in sleep onset difficulties ($\beta=-.325, p=.001$), nocturnal and early awakenings ($\beta=-.374, p=.000$), and weekdays sleep duration ($\beta=-.192, p=.009$) significantly predicted SSQ and explained 46.0% of the variance.

Conclusion: Our results suggest that resilience appears to be a protecting factor in the impacts of sleep difficulties on sleep quality, but only in adolescents. Indeed, in young adults, sleep difficulties seem to be a more important factor modulating sleep quality than changes in sleep duration. These results underline the importance of focusing on the intrinsic characteristics of each population to better target interventions.

Support (if any):

217 SLEEP IN HEAVY MARIJUANA USERS AFTER SMOKING DIFFERING THC DOSES COMPARED TO CONTROLS
Mohammad Sibai,1 Timothy Rohrer,1 Gail kosher,1 Jelena Verkler,1 Leslie Lundahl2
1Sleep Disorders & Research Center, Henry Ford Hospital, 2Wayne State University School of Medicine

Introduction: Sleep disturbances are commonly reported by chronic marijuana (MJ) users and often identified as reasons for MJ relapse and/or other drug use. In the current study we compared the sleep architecture of 12 heavy MJ users to 11 normal controls.

Methods: Participants in the marijuana group met DSM-V criteria for cannabis use disorder but were otherwise healthy individuals. On the first study day, individuals smoked 1330-1400 hr) 11 puffs from a cannabis cigarette (7% THC). During the next four days, under varying experimental contingencies participants smoked an average of 4.58 (+3.48) day 1, 4.92 (+3.62) day 2, 4.75 (+3.52) day 3, and 4.17 (+3.56) day 4 puffs from cannabis cigarettes (7% THC). Their sleep was recorded the first four study nights using standard polysomnography procedures at Henry Ford Sleep and Research Center Hospital, under an 8-hr fixed time in bed (2300-0700 hr). Controls (n=11) had no history of illicit drug use or medical illness and were not shift workers. Neither group reported a history of sleep-related behavior. PSG recordings were scored using Rechtschaffen and Kales standard criteria. Sleep measures included sleep efficiency (total sleep time/time in bed * 100), latency to persistent sleep, and percent of time spent in Stage 1, 2, 3/4, and rapid eye movement (REM).

Results: PSGs taken across all four nights of inpatient stay showed that MJ users spent significantly more time in REM sleep compared to controls (means 24.91, 24.64, 24.42, 24.13 vs 18.81, p<.001) and less time in stage 3/4 sleep (means 4.33, 4.79, 4.53, 6.91 vs 15.68, p<.001). MJ users showed reduced sleep efficiency compared to controls on night 4 (means 82.03 vs 90.32, p=0.039), and increased latency to persistent sleep on night 1 (means 6.04 vs 17.77, p=0.026).

Conclusion: These data show reduced sleep efficiency, lightened sleep (reduced stage 3/4), as well as an increased duration during REM sleep in heavy MJ users during decreased use, findings that are predictive of relapse in other drug abuse populations.

Support (if any): NIH/NIDA R21 DA040770 (LHL)

218 BIDEN WON, BUT SLEEP LOST IN THE 2020 US ELECTION
Luke Gahan,1 Michael Ruder,1 Brian O’Mullane,1 Nathaniel Watson,2 Roy Raymann1
1SleepScore Labs, 2University of Washington School of Medicine

Introduction: The 2020 US Presidential Election captivated the US public resulting in record turnout. In the months preceding the elections COVID-19, racial injustice and the economic downturn had a daily impact on the lives of voters. In this research, we analyze the sleep behavior of Americans in the lead up to the Presidential Elections. We examine specifically the nights of the Presidential and Vice-Presidential Debates and Election Night.

Methods: We examined sleep data from the PSG-validated SleepScore Mobile Application, which uses a non-contact sonar-based method to objectively capture sleep-related metrics and self-reported lifestyle data. The data set included 123,723 nights (5,967 users residing in the US, aged 18-85, mean age: 46.6 +/- 16.7 years, 52.3% female). Data from September 1st until November 3rd were included. This covered the nights of the Presidential Debates (Tuesday 09/29/2020 and Thursday 10/22/2020) and the Vice-Presidential Debate (Wednesday 10/07/2020). Election night was Tuesday, November 3, 2020. Self-reported stress level (0-24 scale) and alcohol consumption (0-9 drinks) were measured using digital slider scales. Mixed Effect Modelling was used for analysis.

Results: The night of the 1st Presidential debate saw a change in sleep-related behavior with users going to bed 9.5 minutes later, as compared to a regular Tuesday Night. This resulted in a decrease in both TST (11.5 mins, p<0.001) and TIB (11.8 mins, p<0.001). Interestingly, neither the the 2nd Presidential Debate, nor the Vice Presidential Debate resulted in significant differences in sleep behavior. On election night users went to bed 14.5 (p<0.001) min later on average, as compared to a normal Tuesday Night. This resulted in a decrease in both TIB (24.3 mins, p<0.001) and TST (19.2 mins, p<0.001). Self-report data showed a 13.3% (p<0.001) increase in stress level on election night and 34.4% (p<0.001) increase alcohol consumption. Importantly, election night was two nights after the end of Daylight Savings Time (DST), Sunday, November 1st.

Conclusion: This analysis shows the 2020 US Presidential election negatively impacted US population sleep. The impact was most pronounced on election night, but also observed following the first Presidential debate. The effect of DST on these findings is unknown but surmised to be meaningful.

Support (if any):