Cardiac screening prior to return to play after SARS-CoV-2 infection: focus on the child and adolescent athlete: A Clinical Consensus Statement of the Task Force for Childhood Health of the European Association of Preventive Cardiology

Flavio D’Ascenzi, Silvia Castelletti, Paolo Emilio Adami, Elena Cavarretta, María Sanz-de la Garza, Viviana Maestrini, Alessandro Biffi, Paul Kantor, Guido Pieles, Evert Verhagen, Monica Tiberi, Henner Hanssen, Michael Papadakis, Josef Niebauer, and Martin Halle

1Department of Medical Biotechnologies, Division of Cardiology, University of Siena, V.le M. Bracci, 16 53100, Siena, Italy; 2IRCCS Istituto Auxologico Italiano, Cardiomyopathy Unit and Department of Cardiovascular, Neural and Metabolic Sciences, Milan, Italy; 3Health and Science Department, World Athletics, Monaco, Principality of Monaco; 4Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy; 5Mediterranea Cardiocentro, Naples, Italy; 6Cardiovascular Institute, Hospital Clinic, IDIBAPS, University of Barcelona, Barcelona, Spain; 7Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy; 8Med-Ex, Medicine and Exercise srl, Medical Partner Scuderia Ferrari, Rome, Italy; 9Division of Cardiology, Department of Pediatrics, Children’s Hospital of Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; 10Sports Medicine Department, Aspetar, Orthopaedic and Sports Medicine Hospital, Doh, Qatar; 11Institute of Sport Exercise and Health (ISEH), University College London, London, UK; 12Amsterdam Collaboration on Health & Safety in Sports, Department of Public and Occupational Health, Amsterdam Movement Sciences, Amsterdam UMC, University Medical Centers – Vrije Universiteit Amsterdam, Amsterdam, Netherlands; 13Sport Medicine, Department of Prevention, ASUR Marche Area Vasta 1, Pesaro, Italy; 14Department of Sport, Exercise and Health, Medical Faculty, University of Basel, Basel, Switzerland; 15Cardiovascular Clinical Academic Group, St George’s, University of London, London, UK; 16University Institute of Sports Medicine, Prevention and Rehabilitation, Paracelsus Medical University of Salzburg, Salzburg, Austria; 17Department of Prevention and Sports Medicine, Accredited Centre for Sports Cardiology/EAPC, School of Medicine, University Hospital Klinikum rechts der Isar, Technical University of Munich, Georg-Brauchle-Ring 56, D-80992 Munich, Germany; and 18DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Potsdamer Str. 58, 10785 Berlin, Germany

Received 6 April 2022; revised 10 August 2022; accepted 16 August 2022

Cardiac sequelae after COVID-19 have been described in athletes, prompting the need to establish a return-to-play (RTP) protocol to guarantee a safe return to sports practice. Sports participation is strongly associated with multiple short- and long-term health benefits in children and adolescents and plays a crucial role in counteracting the psychological and physical effects of the current pandemic. Therefore, RTP protocols should be balanced to promote safe sports practice, particularly after an asymptomatic SARS-CoV-2 infection that represents the common manifestation in children. The present consensus document aims to summarize the current evidence on the cardiac sequelae of COVID-19 in children and young athletes, providing key messages for conducting the RTP protocol in paediatric athletes to promote a safe sports practice during the COVID-19 era.

Keywords: Screening • COVID-19 • Return to play • Sports cardiology • Children • Adolescent • Athlete’s heart

* Corresponding author. Tel: +39 05 77585377, Email: flavio.dascenzi@unisi.it
© The Author(s) 2022. Published by Oxford University Press on behalf of the European Society of Cardiology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Cardiovascular manifestations of SARS-CoV-2 infection in athletes

Individuals younger than 18 years are frequently spared from severe symptoms and remain predominantly asymptomatic during acute SARS-CoV-2 infection, although this is not universally the case. Indeed, cardiac sequelae after COVID-19 have been described in all age groups. In the initial reports, myocarditis, pericarditis, pericardial effusion, and myocardial involvement have been frequently described in young athletes who had an asymptomatic or mildly symptomatic course of the illness, without cardiac symptoms. The highest prevalence of myocarditis (15%) was reported among 26 college athletes evaluated with cardiac magnetic resonance (CMR) after asymptomatic or mildly symptomatic SARS-CoV-2 infection. However, further studies reported a lower prevalence of myocardial involvement, between 0% and 7.6%. In children and adolescents, SARS-CoV-2 infection-related multisystem inflammatory syndrome (MSI-S) has been described: it is a severe but rare hyperimmune response that occurs within 2–6 weeks after the acute infection, leading to severe cardiac manifestations, such as myocardial dysfunction and, in rare cases, to coronary aneurysms.

Considering the potential cardiac consequences of SARS-CoV-2 infection in competitive athletes, many scientific societies have suggested cardiovascular screening for adult athletes before the return-to-play (RTP) protocol, with different protocols ranging from a comprehensive evaluation of all athletes to a stepwise approach based on disease severity. However, few data are available in children. The different clinical course and potential sequelae of SARS-CoV-2 and the need to avoid barriers to participation in exercise in children need to be balanced when considering screening protocols prior to RTP.

Typical course of SARS-CoV-2 infection in children

The clinical presentation of the SARS-CoV-2 infection in children is usually less severe than in adults, and fatal events are rare. Children without symptoms or radiologic signs of pneumonia range in prevalence from 4.4% to 39% of cases. When present, clinical manifestations are usually mild or, more rarely, moderate. The most common symptoms are fever (33–59%) and cough (48–56%). In asymptomatic or mildly symptomatic children, the rate of cardiovascular complications is low, questioning the universal need for cardiac imaging. The use of additional tests, such as cardiopulmonary exercise testing, has therefore also been questioned in young athletes after SARS-CoV-2 infection, suggesting that this should be limited to junior athletes with cardiac symptoms limiting their exercise capacity.

Although rare, severe and fatal SARS-CoV-2 has been reported, with a case mortality rate ranging from 0.2% to 2% in children with mild and severe manifestations, respectively. Pneumonia and MSI-S represent the most common clinical presentations of

![Figure 1](https://academic.oup.com/eurjpc/advance-article/doi/10.1093/eurjpc/zwac180/6691819)

Figure 1 Central illustration summarizing the key elements of the screening after SARS-CoV-2 infection in children practising sport. CPET, cardiopulmonary exercise testing; RTP, return-to-play.
moderate-to-severe COVID-19.18,19 Only a small percentage of children (5–8%) develop acute respiratory distress syndrome,8 which is rarely fatal. The MSI-S is arguably the most severe clinical manifestation of SARS-CoV-2 infection in children, with an estimated incidence of 2 per 100,000 persons younger than 18 years of age at risk, and 1 in 161 clinically infected individuals.19 This syndrome is considered a post-infectious complication, and is characterized by unremitting high fever, gastrointestinal symptoms, colitis, ileitis, pleural effusion, rash, conjunctivitis, periorbital swelling, lymphadenopathy, swollen extremities, headache, confusion, irritability, and hypotension.20 In such cases, cardiac involvement may be evident in 10–20% of those requiring intensive care admission, including malignant arrhythmias, both reduced systolic function (myocarditis) or coronary artery aneurysms. Children admitted to an intensive care unit are more frequently male (60%) and are more often affected by chronic medical conditions (36–50%).20 This data suggests that, although rare, children may experience cardiovascular consequences of SARS-CoV-2 infection, particularly those with more-than-mild course of the disease.21 Education on symptom surveillance is important to identify children with long-covid syndrome (Figure 1).

Conversely, sedentary behaviours are associated with mental disorders and psychosocial misconduct, increased weight, reduced fitness and cardio-metabolic health,22 and eventually an increase in cardiovascular risk factors and morbidities. Indeed, higher adolescent BMI is a significant and independent risk factor for self-reported poor health, Type 2 diabetes, and premature myocardial infarction in adults in their 30s and 40s.26

During the COVID-19 pandemic, the initial lockdown and restrictions on sports practice caused a significant decline in physical activity (PA) levels among all ages but more so for children and adolescents. A significant increase of sedentary behaviour with a large increase of screen time of more than 2 h/day on weekdays was reported.27 In children, a reduction in weekly and daily minutes time spent in moderate-to-vigorous PA has been demonstrated worldwide.28,29 While safety is paramount, it is imperative that RTP protocols in children and adolescents do not create unnecessary barriers which may inadvertently limit PA.

Cardiac screening prior to return-to-play

Even though COVID-19 is more benign in children than in adults, a pre-participation examination should not be based on age but rather the severity of the infection and the presence of cardiac symptoms. Asymptomatic individuals and those with mild symptoms should be cleared by their primary care or team physician, after physical examination and accurate evaluation of medical history. In all individuals, education on surveillance for cardiopulmonary symptoms with return to sports is necessary.10 In case of more severe manifestations of the disease (i.e., prolonged illness, debilitating symptoms) and particularly in the presence of cardiac symptoms (i.e., palpitations, chest pain, pre-syncpe, or syncope), further testing are warranted.

Table 1 Key messages for the promotion of a safe sports practice during the COVID-19 era

<table>
<thead>
<tr>
<th>KEY MESSAGES: promotion of a safe sports practice during the COVID-19 era</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>The clinical presentation of the SARS-CoV-2 infection in children is usually less severe than in adults, and cardiac sequela are rare. The RTP in junior athletes after SARS-CoV-2 infection should be as safe as feasible, not limiting their access to sports practice.</td>
<td></td>
</tr>
<tr>
<td>The need for cardiac evaluation prior to RTP should not be based on age but should be guided by the severity of disease and the presence of cardiac symptoms. Asymptomatic individuals and those with mild symptoms should be cleared by their primary care or team physician, after physical examination and accurate evaluation of medical history.</td>
<td></td>
</tr>
<tr>
<td>The use of echocardiography is not advised in junior athletes after asymptomatic or mildly symptomatic SARS-CoV-2 infection, in the absence of cardiac symptoms.</td>
<td></td>
</tr>
<tr>
<td>Resting ECG, exercise testing, and echocardiogram should be included in the PPE of young athletes with protracted or more-than-mild symptoms during SARS-CoV-2 infection. In case of more-than-mild symptoms, cardiac symptoms or abnormal resting ECG, the PPE of junior athletes should include investigations aimed to exclude pericarditis and myocarditis.</td>
<td></td>
</tr>
<tr>
<td>In the absence of cardiac symptoms limiting exercise capacity, CPET is not advised as a screening tool in junior athletes after SARS-CoV-2 infection. Cardiac magnetic resonance may be performed in junior athletes that had severe cardiac manifestations of the disease or abnormalities at the basal evaluation. Junior athletes diagnosed with pericarditis may return to play after 1–3 months, in the absence of symptoms and normal clinical findings. Junior athletes diagnosed with myocarditis may return to play after 3–6 months, in the absence of symptoms and normal clinical findings.</td>
<td></td>
</tr>
<tr>
<td>The RTP should be gradual.</td>
<td></td>
</tr>
</tbody>
</table>

RTP, return-to-play; PPE, pre-participation evaluation; CPET, cardiopulmonary exercise testing.
including resting ECG, exercise testing, echocardiogram, 24 h ambulatory ECG monitoring, blood testing, or CMR, as indicated. The clinical evaluation should include the assessment of respiratory symptoms, given the potential consequences of the infection on the pulmonary system. Increased vigilance is prudent in individuals with cardiac symptoms, regardless of the severity of preceding SARS-CoV-2 infection (Table 1).

In case of clinical pericarditis or myocarditis, the athlete should be restricted for 1–3 or 3–6 months, respectively, and only resume activities when all indices of inflammation have normalized, as per established ESC guidelines. If the pre-participation evaluation and examination are normal, no further testing is necessary, but a close follow-up is warranted. The RTP should be gradual and should last at least 7 days or longer depending on the exercise tolerability in case of more severe forms of COVID-19.

Conclusions

In conclusion, SARS-CoV-2-infection has a benign course in most children. Sports participation is strongly associated with multiple short- and long-term health benefits in children and adolescents and plays a crucial role in countering the psychological and physical effects of the current pandemic. Therefore, RTP protocols should be balanced, to promote safe sports practice. In children with cardiac symptoms or with SARS-CoV-2-related symptoms which are protracted or flared, pre-participation evaluation and RTP should be carried based on the principles in accordance with the current 2020 ESC Sports Cardiology Guidelines. Careful clinical review of the evidence for prior cardiac involvement due to SARS-CoV-2 is necessary when providing safe advice while still enabling children and young adults to benefit lifelong from the protective ‘armour’ of positive health effects that sport offers.

Conflict of interest: None declared.

References

